Bustamante Carlos, Chemla Yann R, Moffitt Jeffrey R
Cold Spring Harb Protoc. 2009 Oct;2009(10):pdb.ip75. doi: 10.1101/pdb.ip75.
Optical traps or "optical tweezers" have become an indispensable tool in understanding fundamental biological processes. The environment, the instrument components, and the overall design all have important roles in determining the spatial resolution of an optical trap. However, even with careful attention to these details, the spatial resolution of the optical tweezers is still fundamentally limited by the forces that induce Brownian fluctuations of the trapped microspheres. In this article, we focus on the ways in which the design and implementation of an experiment--the choice of bead size, tether length, and even the method in which the motions of the beads are monitored--can have a large impact on the fundamental resolution of the measurement. By investigating how the Brownian fluctuations depend on experimental parameters and the detection method, we develop a set of guidelines for designing a high-resolution experiment, with a prescription for minimizing the effect of Brownian fluctuations, thus maximizing the resolution of the experiment.
光学阱或“光镊”已成为理解基本生物过程中不可或缺的工具。环境、仪器组件以及整体设计在决定光学阱的空间分辨率方面都起着重要作用。然而,即便仔细关注这些细节,光镊的空间分辨率仍从根本上受到诱捕微球布朗波动的力的限制。在本文中,我们着重探讨实验的设计与实施方式——珠子大小、系链长度的选择,甚至监测珠子运动的方法——如何能对测量的基本分辨率产生重大影响。通过研究布朗波动如何依赖于实验参数和检测方法,我们制定了一套设计高分辨率实验的指导原则,以及一个将布朗波动影响降至最低从而最大化实验分辨率的方案。