Suppr超能文献

泛素 C 端水解酶-L1 保护囊性纤维化跨膜电导调节因子免于早期蛋白酶体降解。

Ubiquitin C-terminal hydrolase-L1 protects cystic fibrosis transmembrane conductance regulator from early stages of proteasomal degradation.

机构信息

Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA.

出版信息

J Biol Chem. 2010 Apr 9;285(15):11314-25. doi: 10.1074/jbc.M109.044057. Epub 2010 Feb 10.

Abstract

DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) degradation involves ubiquitin modification and efficient proteasomal targeting of the nascent misfolded protein. We show that a deubiquitinating enzyme, ubiquitin C-terminal hydrolase-L1 (UCH-L1), is highly expressed in cystic fibrosis (CF) airway epithelial cells in vitro and in vivo. We hypothesized that the elevation in UCH-L1 in CF cells represents a cellular adaptation to counterbalance excessive proteasomal degradation. The bronchial epithelial cell lines IB3-1 (CF, high UCH-L1 expression) and S9 (non-CF, low UCH-L1 expression) were transiently transfected with wild type (WT) or DeltaF508 CFTR, WT UCH-L1 or small interfering RNA-UCH-L1, and a variety of ubiquitin mutants. We observed a positive correlation between UCH-L1 expression and steady state levels of WT- or DeltaF508-CFTR, and this stabilizing effect was confined to the early stages of CFTR synthesis. Immunolocalization of UCH-L1 by confocal microscopy revealed a partial co-localization with a ribosomal subunit and the endoplasmic reticulum. The UCH-L1-associated increase in CFTR levels was correlated with an increase in ubiquitinated CFTR (CFTR-Ub). Co-transfection with mutant ubiquitins and treatment with proteasome inhibitors suggested that UCH-L1 was reducing the proteasomal targeting of CFTR during synthesis by shortening conjugated polyubiquitin chains. Although not sufficient by itself to rescue mutant CFTR therapeutically, the elevation of UCH-L1 and its effect on CFTR processing provides insight into its potential roles in CF and other diseases.

摘要

DeltaF508 囊性纤维化跨膜电导调节因子 (CFTR) 的降解涉及泛素修饰和新生错误折叠蛋白的有效蛋白酶体靶向。我们表明,一种去泛素化酶,泛素 C 端水解酶-L1 (UCH-L1),在体外和体内的囊性纤维化 (CF) 气道上皮细胞中高度表达。我们假设 CF 细胞中 UCH-L1 的升高代表细胞适应以抵消过度的蛋白酶体降解。支气管上皮细胞系 IB3-1 (CF,高 UCH-L1 表达) 和 S9 (非 CF,低 UCH-L1 表达) 瞬时转染野生型 (WT) 或 DeltaF508 CFTR、WT UCH-L1 或小干扰 RNA-UCH-L1 以及各种泛素突变体。我们观察到 UCH-L1 表达与 WT 或 DeltaF508-CFTR 的稳态水平之间存在正相关,这种稳定作用仅限于 CFTR 合成的早期阶段。通过共聚焦显微镜对 UCH-L1 的免疫定位显示其与核糖体亚基和内质网有部分共定位。UCH-L1 相关的 CFTR 水平增加与泛素化 CFTR (CFTR-Ub) 的增加相关。共转染突变泛素和蛋白酶体抑制剂处理表明,UCH-L1 通过缩短连接的多泛素链来减少 CFTR 在合成过程中的蛋白酶体靶向。虽然本身不足以在治疗上拯救突变 CFTR,但 UCH-L1 的升高及其对 CFTR 加工的影响为其在 CF 和其他疾病中的潜在作用提供了深入了解。

相似文献

3
The anion transporter SLC26A9 localizes to tight junctions and is degraded by the proteasome when co-expressed with F508del-CFTR.
J Biol Chem. 2019 Nov 29;294(48):18269-18284. doi: 10.1074/jbc.RA119.010192. Epub 2019 Oct 23.
7
Chemical rescue of deltaF508-CFTR mimics genetic repair in cystic fibrosis bronchial epithelial cells.
Mol Cell Proteomics. 2008 Jun;7(6):1099-110. doi: 10.1074/mcp.M700303-MCP200. Epub 2008 Feb 19.
8
Opposite regulation of F508del-CFTR biogenesis by four poly-lysine ubiquitin chains In vitro.
Biochim Biophys Acta Proteins Proteom. 2022 Jun 1;1870(6):140792. doi: 10.1016/j.bbapap.2022.140792. Epub 2022 May 13.

引用本文的文献

1
SUMOylation represses the transcriptional activity of the Unfolded Protein Response transducer ATF6.
Biochem Biophys Res Commun. 2017 Dec 16;494(3-4):446-451. doi: 10.1016/j.bbrc.2017.10.103. Epub 2017 Oct 20.
2
In silico search for modifier genes associated with pancreatic and liver disease in Cystic Fibrosis.
PLoS One. 2017 Mar 24;12(3):e0173822. doi: 10.1371/journal.pone.0173822. eCollection 2017.
3
Trafficking and function of the cystic fibrosis transmembrane conductance regulator: a complex network of posttranslational modifications.
Am J Physiol Lung Cell Mol Physiol. 2016 Oct 1;311(4):L719-L733. doi: 10.1152/ajplung.00431.2015. Epub 2016 Jul 29.
4
The silent codon change I507-ATC->ATT contributes to the severity of the ΔF508 CFTR channel dysfunction.
FASEB J. 2013 Nov;27(11):4630-45. doi: 10.1096/fj.13-227330. Epub 2013 Aug 1.
6
CFTR: folding, misfolding and correcting the ΔF508 conformational defect.
Trends Mol Med. 2012 Feb;18(2):81-91. doi: 10.1016/j.molmed.2011.10.003. Epub 2011 Dec 3.
8
Applications of proteomic technologies for understanding the premature proteolysis of CFTR.
Expert Rev Proteomics. 2010 Aug;7(4):473-86. doi: 10.1586/epr.10.42.

本文引用的文献

1
Linear polyubiquitination: a new regulator of NF-kappaB activation.
EMBO Rep. 2009 Jul;10(7):706-13. doi: 10.1038/embor.2009.144. Epub 2009 Jun 19.
2
The ER-resident ubiquitin-specific protease 19 participates in the UPR and rescues ERAD substrates.
EMBO Rep. 2009 Jul;10(7):755-61. doi: 10.1038/embor.2009.69. Epub 2009 May 22.
4
Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation.
Cell. 2009 Mar 20;136(6):1098-109. doi: 10.1016/j.cell.2009.03.007.
5
Membrane-associated farnesylated UCH-L1 promotes alpha-synuclein neurotoxicity and is a therapeutic target for Parkinson's disease.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4635-40. doi: 10.1073/pnas.0806474106. Epub 2009 Mar 4.
6
Diversity of degradation signals in the ubiquitin-proteasome system.
Nat Rev Mol Cell Biol. 2008 Sep;9(9):679-90. doi: 10.1038/nrm2468.
8
Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy.
J Biol Chem. 2008 Aug 29;283(35):23731-8. doi: 10.1074/jbc.M801918200. Epub 2008 Jun 12.
9
The role of PGP9.5 as a tumor suppressor gene in human cancer.
Int J Cancer. 2008 Aug 15;123(4):753-9. doi: 10.1002/ijc.23354.
10
Chemical rescue of deltaF508-CFTR mimics genetic repair in cystic fibrosis bronchial epithelial cells.
Mol Cell Proteomics. 2008 Jun;7(6):1099-110. doi: 10.1074/mcp.M700303-MCP200. Epub 2008 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验