University of Alabama at Birmingham, Department of Cell Biology, Birmingham, AL, USA.
Expert Rev Proteomics. 2010 Aug;7(4):495-506. doi: 10.1586/epr.10.45.
Proteomic analysis has proved to be an important tool for understanding the complex nature of genetic disorders, such as cystic fibrosis (CF), by defining the cellular protein environment (proteome) associated with wild-type and mutant proteins. Proteomic screens identified the proteome of CF transmembrane conductance regulator (CFTR), and provided fundamental information to studies designed for understanding the crucial components of physiological CFTR function. Simultaneously, high-throughput screens for small-molecular correctors of CFTR mutants provided promising candidates for therapy. The majority of CF cases are caused by nucleotide deletions (DeltaF508 CFTR; >75%), resulting in CFTR misfolding, or insertion of premature termination codons ( approximately 10%), leading to unstable mRNA and reduced levels of truncated dysfunctional CFTR. In this article, we review recent results of proteomic screens, developments in identifying correctors for the most frequent CFTR mutants, and comment on how integration of the knowledge gained from these studies may aid in finding a cure for CF and a number of other genetic disorders.
蛋白质组学分析已被证明是理解囊性纤维化(CF)等遗传疾病复杂性质的重要工具,它通过定义与野生型和突变型蛋白相关的细胞蛋白环境(蛋白质组)来实现。蛋白质组学筛选鉴定了 CF 跨膜电导调节剂(CFTR)的蛋白质组,并为旨在理解生理 CFTR 功能关键组成部分的研究提供了基本信息。同时,对 CFTR 突变体的小分子校正剂的高通量筛选为治疗提供了有希望的候选药物。大多数 CF 病例是由核苷酸缺失(DeltaF508 CFTR;>75%)引起的,导致 CFTR 错误折叠,或插入过早终止密码子(约 10%),导致不稳定的 mRNA 和截短功能失调 CFTR 水平降低。本文综述了蛋白质组学筛选的最新结果,鉴定最常见 CFTR 突变体校正因子的进展,并评论了如何整合这些研究获得的知识可能有助于找到 CF 和许多其他遗传疾病的治疗方法。