Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
Xenotransplantation. 2010 Jan-Feb;17(1):61-70. doi: 10.1111/j.1399-3089.2009.00565.x.
Glycoantigens represent major obstacles to successful xenotransplantation. Even after the alpha1-3galactosyltransferase (GalT) gene knockout (GalT-KO) pigs were produced, non-Gal antigens continue to be present. This study reports on lectin blot analyses for endothelial cells (EC) and fibroblasts from GalT-KO pigs.
Differences in glycoantigens that are produced on cell surfaces in humans and pigs were surveyed. Differences between ECs and fibroblasts from wild-type and GalT-KO pigs were also examined. EC and fibroblasts from GalT-KO pigs (heterozygous and homozygous) with N-acetylglucosaminyltransferase-III (GnT-III), a wild-type EC from the sibling, human EC lines, HUVEC (human EC from umbilical veins), & HAOEC (human EC from aortas), and human fibroblast line were used. EC and fibroblasts were cultured in gelatin-coated dishes for several days. After sonication and centrifugation, the supernatant protein from each cell was labeled with Cy3, applied to a lectin array and scanned with an SC Profiler, and analyzed using an Array Pro Analyzer.
The pig EC showed higher signals in Euonymus Europaeus (EEL) & Griffonia simplicifolia I-B(4) (GSI-B4), binds alpha-Gal, and in Wisteria Floribunda (WFA), Helix pomatia (HPA), Glycine max (SBA), & Griffonia simplicifolia I-A(4) (GSI-A4), binds GalNAc including the Thomsen-Friedenreich precursor (Tn)-antigen, while the human EC showed strong signals in Ulex europaeus I (UEA-I), Maackia amurensis (MAL), Erythrina cristagalli (ECA), & Trichosanthes japonica I (TJA-I) instead. The EC from the GalT-KO pig signals for EEL & GSI-B4 disappeared and those for Bauhinia purpurea alba (BPL), HPA, SBA, & GSI-A4 were greatly diminished as well, while it up-regulated signals for Sambucus Nigra (SNA), Sambucus sieboldiana (SSA), & TJA-I, bind alpha2-6 sialic acid, compared to the wild-type pig EC. Concerning fibroblasts, the signals for HPA, SBA, & GSI-A4 were the most intense in the wild-type, and the intensities for homozygous-KO were less, approaching those of humans. In addition, the order of the intensities, as detected by Arachis hypogaea (PNA) & Maclura pomifera (MPA), binding Galbeta1-2GalNAc, indicates that the Thomsen-Friedenreich (T)-antigen is likely present on pig fibroblasts.
It is possible that the T-antigen and Tn-antigen related to GalNAc are non-Gal antigens, but, fortunately, not only alpha-Gal but also GalNAc were found to be decreased in the KO-pig.
糖抗原是成功进行异种移植的主要障碍。即使在生产出α1-3半乳糖基转移酶(GalT)基因敲除(GalT-KO)猪后,非 Gal 抗原仍会继续存在。本研究报告了 GalT-KO 猪内皮细胞(EC)和成纤维细胞的凝集素印迹分析结果。
调查了人类和猪表面产生的糖抗原差异。还检查了野生型和 GalT-KO 猪的 EC 和成纤维细胞之间的差异。使用 GalT-KO 猪(杂合子和纯合子)的 N-乙酰氨基葡萄糖基转移酶-III(GnT-III)、来自兄弟姐妹的野生型 EC、人 EC 系 HUVEC(来自脐带静脉的人 EC)和 HAOEC(来自主动脉的人 EC),以及人成纤维细胞系。将 EC 和成纤维细胞在涂有明胶的培养皿中培养数天。经超声处理和离心后,将来自每个细胞的上清蛋白用 Cy3 标记,应用于凝集素阵列,用 SC Profiler 扫描,并使用 Array Pro Analyzer 进行分析。
猪 EC 在 Euonymus Europaeus(EEL)和 Griffonia simplicifolia I-B(4)(GSI-B4)上显示出更高的信号,与α-Gal 结合,在 Wisteria Floribunda(WFA)、Helix pomatia(HPA)、Glycine max(SBA)和 Griffonia simplicifolia I-A(4)(GSI-A4)上显示出更强的信号,与 GalNAc 结合,包括 Thomsen-Friedenreich 前体(Tn)-抗原,而人 EC 则在 Ulex europaeus I(UEA-I)、Maackia amurensis(MAL)、Erythrina cristagalli(ECA)和 Trichosanthes japonica I(TJA-I)上显示出强烈的信号。GalT-KO 猪的 EEL 和 GSI-B4 信号消失,Bauhinia purpurea alba(BPL)、HPA、SBA 和 GSI-A4 的信号也大大减少,同时它上调了 Sambucus Nigra(SNA)、Sambucus sieboldiana(SSA)和 TJA-I 的信号,与野生型猪 EC 一样,与α2-6 唾液酸结合。关于成纤维细胞,HPA、SBA 和 GSI-A4 的信号在野生型中最强,而纯合 KO 的信号较弱,接近人类。此外,用 Arachis hypogaea(PNA)和 Maclura pomifera(MPA)检测到的强度顺序,与 Galβ1-2GalNAc 结合,表明猪成纤维细胞上可能存在 Thomsen-Friedenreich(T)抗原。
T 抗原和与 GalNAc 相关的 Tn 抗原可能是非 Gal 抗原,但幸运的是,不仅α-Gal,而且 GalNAc 在 KO 猪中也被发现减少。