Cappadona Salvatore, Nanni Paolo, Benevento Marco, Levander Fredrik, Versura Piera, Roda Aldo, Cerutti Sergio, Pattini Linda
Department of Bioengineering, Politecnico di Milano, 20133 Milan, Italy.
J Biomed Biotechnol. 2010;2010:131505. doi: 10.1155/2010/131505. Epub 2010 Jan 28.
Label-free LC-MS analysis allows determining the differential expression level of proteins in multiple samples, without the use of stable isotopes. This technique is based on the direct comparison of multiple runs, obtained by continuous detection in MS mode. Only differentially expressed peptides are selected for further fragmentation, thus avoiding the bias toward abundant peptides typical of data-dependent tandem MS. The computational framework includes detection, alignment, normalization and matching of peaks across multiple sets, and several software packages are available to address these processing steps. Yet, more care should be taken to improve the quality of the LC-MS maps entering the pipeline, as this parameter severely affects the results of all downstream analyses. In this paper we show how the inclusion of a preprocessing step of background subtraction in a common laboratory pipeline can lead to an enhanced inclusion list of peptides selected for fragmentation and consequently to better protein identification.
无标记液相色谱-质谱联用分析允许在不使用稳定同位素的情况下,测定多个样品中蛋白质的差异表达水平。该技术基于通过质谱模式下的连续检测获得的多次运行的直接比较。仅选择差异表达的肽段进行进一步碎裂,从而避免了数据依赖串联质谱中典型的对高丰度肽段的偏向。计算框架包括多个数据集之间峰的检测、比对、归一化和匹配,并且有几个软件包可用于处理这些步骤。然而,应该更加注意提高进入流程的液相色谱-质谱图谱的质量,因为该参数会严重影响所有下游分析的结果。在本文中,我们展示了在常规实验室流程中加入背景扣除的预处理步骤如何能够导致用于碎裂的肽段的增强型包含列表,从而实现更好的蛋白质鉴定。