Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA.
J Chem Phys. 2010 Feb 14;132(6):064102. doi: 10.1063/1.3308624.
A many-body Green's function approach to the microscopic theory of plasmon-enhanced spectroscopy is presented within the context of localized surface-plasmon resonance spectroscopy and applied to investigate the coupling between quantum-molecular and classical-plasmonic resonances in monolayer-coated silver nanoparticles. Electronic propagators or Green's functions, accounting for the repeated polarization interaction between a single molecule and its image in a nearby nanoscale metal, are explicitly computed and used to construct the linear-response properties of the combined molecule-metal system to an external electromagnetic perturbation. Shifting and finite lifetime of states appear rigorously and automatically within our approach and reveal an intricate coupling between molecule and metal not fully described by previous theories. Self-consistent incorporation of this quantum-molecular response into the continuum-electromagnetic scattering of the molecule-metal target is exploited to compute the localized surface-plasmon resonance wavelength shift with respect to the bare metal from first principles.
本文提出了一种多体格林函数方法,用于研究等离子体增强光谱的微观理论,该方法基于局域表面等离子体共振光谱,并应用于研究单层覆盖银纳米粒子中量子分子和经典等离子体共振之间的耦合。电子传播子或格林函数,考虑到单个分子与其附近纳米尺度金属中的镜像之间的反复极化相互作用,被明确计算,并用于构建组合分子-金属系统对外部电磁微扰的线性响应特性。在我们的方法中,状态的移动和有限寿命严格而自动地出现,并揭示了分子和金属之间以前的理论无法完全描述的复杂耦合。通过自洽地将这种量子分子响应纳入分子-金属靶的连续电磁散射中,可以从第一性原理计算相对于裸金属的局域表面等离子体共振波长位移。