Suppr超能文献

纳米级贵金属:光学和光热性质及其在成像、传感、生物学和医学中的一些应用。

Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

作者信息

Jain Prashant K, Huang Xiaohua, El-Sayed Ivan H, El-Sayed Mostafa A

机构信息

Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

Acc Chem Res. 2008 Dec;41(12):1578-86. doi: 10.1021/ar7002804.

Abstract

Noble metal nanostructures attract much interest because of their unique properties, including large optical field enhancements resulting in the strong scattering and absorption of light. The enhancement in the optical and photothermal properties of noble metal nanoparticles arises from resonant oscillation of their free electrons in the presence of light, also known as localized surface plasmon resonance (LSPR). The plasmon resonance can either radiate light (Mie scattering), a process that finds great utility in optical and imaging fields, or be rapidly converted to heat (absorption); the latter mechanism of dissipation has opened up applications in several new areas. The ability to integrate metal nanoparticles into biological systems has had greatest impact in biology and biomedicine. In this Account, we discuss the plasmonic properties of gold and silver nanostructures and present examples of how they are being utilized for biodiagnostics, biophysical studies, and medical therapy. For instance, taking advantage of the strong LSPR scattering of gold nanoparticles conjugated with specific targeting molecules allows the molecule-specific imaging and diagnosis of diseases such as cancer. We emphasize in particular how the unique tunability of the plasmon resonance properties of metal nanoparticles through variation of their size, shape, composition, and medium allows chemists to design nanostructures geared for specific bio-applications. We discuss some interesting nanostructure geometries, including nanorods, nanoshells, and nanoparticle pairs, that exhibit dramatically enhanced and tunable plasmon resonances, making them highly suitable for bio-applications. Tuning the nanostructure shape (e.g., nanoprisms, nanorods, or nanoshells) is another means of enhancing the sensitivity of the LSPR to the nanoparticle environment and, thereby, designing effective biosensing agents. Metal nanoparticle pairs or assemblies display distance-dependent plasmon resonances as a result of field coupling. A universal scaling model, relating the plasmon resonance frequency to the interparticle distance in terms of the particle size, becomes potentially useful for measuring nanoscale distances (and their changes) in biological systems. The strong plasmon absorption and photothermal conversion of gold nanoparticles has been exploited in cancer therapy through the selective localized photothermal heating of cancer cells. For nanorods or nanoshells, the LSPR can be tuned to the near-infrared region, making it possible to perform in vivo imaging and therapy. The examples of the applications of noble metal nanostructures provided herein can be readily generalized to other areas of biology and medicine because plasmonic nanomaterials exhibit great range, versatility, and systematic tunability of their optical attributes.

摘要

贵金属纳米结构因其独特的性质而备受关注,这些性质包括大的光场增强,从而导致光的强烈散射和吸收。贵金属纳米粒子的光学和光热性质的增强源于其自由电子在光存在下的共振振荡,也称为局域表面等离子体共振(LSPR)。等离子体共振既可以辐射光(米氏散射),这一过程在光学和成像领域有很大用途,也可以迅速转化为热(吸收);后一种耗散机制在几个新领域开辟了应用。将金属纳米粒子整合到生物系统中的能力在生物学和生物医学领域产生了最大的影响。在这篇综述中,我们讨论了金和银纳米结构的等离子体性质,并举例说明它们如何用于生物诊断、生物物理研究和医学治疗。例如,利用与特定靶向分子偶联的金纳米粒子的强LSPR散射,可以对癌症等疾病进行分子特异性成像和诊断。我们特别强调了如何通过改变金属纳米粒子的大小、形状、组成和介质来实现等离子体共振性质的独特可调性,使化学家能够设计出适用于特定生物应用的纳米结构。我们讨论了一些有趣的纳米结构几何形状,包括纳米棒、纳米壳和纳米粒子对,它们表现出显著增强且可调的等离子体共振,使其非常适合生物应用。调整纳米结构的形状(例如纳米棱镜、纳米棒或纳米壳)是提高LSPR对纳米粒子环境敏感性的另一种方法,从而设计出有效的生物传感剂。由于场耦合,金属纳米粒子对或组件表现出与距离相关的等离子体共振。一个将等离子体共振频率与粒子间距离按粒子大小联系起来的通用标度模型,可能对测量生物系统中的纳米尺度距离(及其变化)有用。金纳米粒子的强等离子体吸收和光热转换已被用于癌症治疗,通过对癌细胞进行选择性局部光热加热。对于纳米棒或纳米壳,LSPR可以调谐到近红外区域,从而可以进行体内成像和治疗。本文提供的贵金属纳米结构应用实例可以很容易地推广到生物学和医学的其他领域,因为等离子体纳米材料在其光学属性方面具有很大的范围、通用性和系统可调性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验