Suppr超能文献

SPIRIT:在有根系统发育树中识别水平基因转移。

SPRIT: Identifying horizontal gene transfer in rooted phylogenetic trees.

机构信息

Department of Neuroscience, Biomedical Centre, Uppsala University, Box 593, SE-751 24 Uppsala, Sweden.

出版信息

BMC Evol Biol. 2010 Feb 13;10:42. doi: 10.1186/1471-2148-10-42.

Abstract

BACKGROUND

Phylogenetic trees based on sequences from a set of taxa can be incongruent due to horizontal gene transfer (HGT). By identifying the HGT events, we can reconcile the gene trees and derive a taxon tree that adequately represents the species' evolutionary history. One HGT can be represented by a rooted Subtree Prune and Regraft (RSPR) operation and the number of RSPRs separating two trees corresponds to the minimum number of HGT events. Identifying the minimum number of RSPRs separating two trees is NP-hard, but the problem can be reduced to fixed parameter tractable. A number of heuristic and two exact approaches to identifying the minimum number of RSPRs have been proposed. This is the first implementation delivering an exact solution as well as the intermediate trees connecting the input trees.

RESULTS

We present the SPR Identification Tool (SPRIT), a novel algorithm that solves the fixed parameter tractable minimum RSPR problem and its GPL licensed Java implementation. The algorithm can be used in two ways, exhaustive search that guarantees the minimum RSPR distance and a heuristic approach that guarantees finding a solution, but not necessarily the minimum one. We benchmarked SPRIT against other software in two different settings, small to medium sized trees i.e. five to one hundred taxa and large trees i.e. thousands of taxa. In the small to medium tree size setting with random artificial incongruence, SPRIT's heuristic mode outperforms the other software by always delivering a solution with a low overestimation of the RSPR distance. In the large tree setting SPRIT compares well to the alternatives when benchmarked on finding a minimum solution within a reasonable time. SPRIT presents both the minimum RSPR distance and the intermediate trees.

CONCLUSIONS

When used in exhaustive search mode, SPRIT identifies the minimum number of RSPRs needed to reconcile two incongruent rooted trees. SPRIT also performs quick approximations of the minimum RSPR distance, which are comparable to, and often better than, purely heuristic solutions. Put together, SPRIT is an excellent tool for identification of HGT events and pinpointing which taxa have been involved in HGT.

摘要

背景

基于一组分类单元的序列构建的系统发育树可能由于水平基因转移(HGT)而不一致。通过识别 HGT 事件,我们可以协调基因树,并得出一个充分代表物种进化历史的分类单元树。一个 HGT 可以用一个有根的子树修剪和重新连接(RSPR)操作来表示,两个树之间的 RSPR 数量对应于 HGT 事件的最小数量。识别两个树之间的最小 RSPR 数量是 NP 难问题,但可以将问题简化为固定参数可解。已经提出了一些启发式方法和两种确定最小 RSPR 数量的精确方法。这是第一个提供精确解决方案以及连接输入树的中间树的实现。

结果

我们提出了 SPR 识别工具(SPRIT),这是一种解决固定参数可解最小 RSPR 问题的新算法及其 GPL 许可的 Java 实现。该算法可以以两种方式使用,一种是保证最小 RSPR 距离的穷举搜索,另一种是保证找到解决方案但不一定是最小解决方案的启发式方法。我们在两种不同的设置中,即从小到中等大小的树(即五到一百个分类单元)和大的树(即数千个分类单元)中,对 SPRIT 与其他软件进行了基准测试。在随机人工不一致的小到中等大小的树大小设置中,SPRIT 的启发式模式通过始终提供具有低 RSPR 距离高估的解决方案来优于其他软件。在大型树设置中,SPRIT 在合理的时间内找到最小解决方案时与替代方案相比表现良好。SPRIT 同时提供最小 RSPR 距离和中间树。

结论

当在穷举搜索模式下使用时,SPRIT 可以识别协调两个不一致的有根树所需的最小 RSPR 数量。SPRIT 还可以快速近似最小 RSPR 距离,这些距离与纯启发式解决方案相当,并且通常更好。总的来说,SPRIT 是识别 HGT 事件并确定哪些分类单元参与 HGT 的绝佳工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25d9/2829038/5f827de95f0a/1471-2148-10-42-1.jpg

相似文献

1
SPRIT: Identifying horizontal gene transfer in rooted phylogenetic trees.
BMC Evol Biol. 2010 Feb 13;10:42. doi: 10.1186/1471-2148-10-42.
3
A polynomial-time algorithm computing lower and upper bounds of the rooted subtree prune and regraft distance.
J Comput Biol. 2011 May;18(5):743-57. doi: 10.1089/cmb.2010.0045. Epub 2010 Dec 18.
4
Lost in space? Generalising subtree prune and regraft to spaces of phylogenetic networks.
J Theor Biol. 2017 Jun 21;423:1-12. doi: 10.1016/j.jtbi.2017.03.032. Epub 2017 Apr 13.
5
On the fixed parameter tractability of agreement-based phylogenetic distances.
J Math Biol. 2017 Jan;74(1-2):239-257. doi: 10.1007/s00285-016-1023-3. Epub 2016 May 25.
6
Faster Exact Computation of rSPR Distance via Better Approximation.
IEEE/ACM Trans Comput Biol Bioinform. 2020 May-Jun;17(3):916-929. doi: 10.1109/TCBB.2018.2878731.
7
Improved Practical Algorithms for Rooted Subtree Prune and Regraft (rSPR) Distance and Hybridization Number.
J Comput Biol. 2020 Sep;27(9):1422-1432. doi: 10.1089/cmb.2019.0432. Epub 2020 Feb 12.
8
Exploring the Tiers of Rooted Phylogenetic Network Space Using Tail Moves.
Bull Math Biol. 2018 Aug;80(8):2177-2208. doi: 10.1007/s11538-018-0452-0. Epub 2018 Jun 14.
9
Phylogenetic identification of lateral genetic transfer events.
BMC Evol Biol. 2006 Feb 11;6:15. doi: 10.1186/1471-2148-6-15.
10
Supertrees Based on the Subtree Prune-and-Regraft Distance.
Syst Biol. 2014 Jul;63(4):566-81. doi: 10.1093/sysbio/syu023. Epub 2014 Apr 2.

引用本文的文献

1
Horizontal Gene Transfer Inference: Gene Presence-Absence Outperforms Gene Trees.
Mol Biol Evol. 2025 Jul 1;42(7). doi: 10.1093/molbev/msaf166.
4
Widespread of horizontal gene transfer in the human genome.
BMC Genomics. 2017 Apr 4;18(1):274. doi: 10.1186/s12864-017-3649-y.
5
Reconciliation of gene and species trees.
Biomed Res Int. 2014;2014:642089. doi: 10.1155/2014/642089. Epub 2014 Mar 27.
6
Detection of homologous recombination events in bacterial genomes.
PLoS One. 2013 Oct 7;8(10):e75230. doi: 10.1371/journal.pone.0075230. eCollection 2013.
7
Widespread horizontal transfer of retrotransposons.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):1012-6. doi: 10.1073/pnas.1205856110. Epub 2012 Dec 31.
8
A fast tool for minimum hybridization networks.
BMC Bioinformatics. 2012 Jul 2;13:155. doi: 10.1186/1471-2105-13-155.
9
Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss.
Bioinformatics. 2012 Jun 15;28(12):i283-91. doi: 10.1093/bioinformatics/bts225.

本文引用的文献

1
Calculating SPR distances between trees.
Cladistics. 2008 Aug;24(4):591-597. doi: 10.1111/j.1096-0031.2007.00189.x. Epub 2007 Nov 14.
2
Quantifying hybridization in realistic time.
J Comput Biol. 2011 Oct;18(10):1305-18. doi: 10.1089/cmb.2009.0166. Epub 2011 Jan 6.
4
A practical method for exact computation of subtree prune and regraft distance.
Bioinformatics. 2009 Jan 15;25(2):190-6. doi: 10.1093/bioinformatics/btn606. Epub 2008 Nov 19.
5
PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships.
BMC Bioinformatics. 2008 Jul 28;9:322. doi: 10.1186/1471-2105-9-322.
6
Horizontal gene transfer in eukaryotic evolution.
Nat Rev Genet. 2008 Aug;9(8):605-18. doi: 10.1038/nrg2386.
7
Computing the hybridization number of two phylogenetic trees is fixed-parameter tractable.
IEEE/ACM Trans Comput Biol Bioinform. 2007 Jul-Sep;4(3):458-466. doi: 10.1109/tcbb.2007.1019.
8
Approximating subtree distances between phylogenies.
J Comput Biol. 2006 Oct;13(8):1419-34. doi: 10.1089/cmb.2006.13.1419.
9
Phylogenetic identification of lateral genetic transfer events.
BMC Evol Biol. 2006 Feb 11;6:15. doi: 10.1186/1471-2148-6-15.
10
Reconstructing reticulate evolution in species-theory and practice.
J Comput Biol. 2005 Jul-Aug;12(6):796-811. doi: 10.1089/cmb.2005.12.796.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验