Delft Institute of Applied Mathematics, Delft University of Technology, Postbus 5031, 2600 GA, Delft, The Netherlands.
MTA Rényi Institute of Mathematics, Reáltanoda u 13-15, Budapest, 1053, Hungary.
Bull Math Biol. 2018 Aug;80(8):2177-2208. doi: 10.1007/s11538-018-0452-0. Epub 2018 Jun 14.
Popular methods for exploring the space of rooted phylogenetic trees use rearrangement moves such as rooted Nearest Neighbour Interchange (rNNI) and rooted Subtree Prune and Regraft (rSPR). Recently, these moves were generalized to rooted phylogenetic networks, which are a more suitable representation of reticulate evolutionary histories, and it was shown that any two rooted phylogenetic networks of the same complexity are connected by a sequence of either rSPR or rNNI moves. Here, we show that this is possible using only tail moves, which are a restricted version of rSPR moves on networks that are more closely related to rSPR moves on trees. The connectedness still holds even when we restrict to distance-1 tail moves (a localized version of tail moves). Moreover, we give bounds on the number of (distance-1) tail moves necessary to turn one network into another, which in turn yield new bounds for rSPR, rNNI and SPR (i.e. the equivalent of rSPR on unrooted networks). The upper bounds are constructive, meaning that we can actually find a sequence with at most this length for any pair of networks. Finally, we show that finding a shortest sequence of tail or rSPR moves is NP-hard.
流行的探索有根系统发生树空间的方法使用重排操作,例如有根最近邻居交换(rNNI)和有根子树修剪和嫁接(rSPR)。最近,这些操作被推广到有根系统发生网络,这是一种更适合描述网状进化历史的表示方法,并且已经证明,任何两个具有相同复杂度的有根系统发生网络都可以通过 rSPR 或 rNNI 操作的序列连接。在这里,我们展示了仅使用尾部操作就可以实现这一点,尾部操作是网络上 rSPR 操作的受限版本,与树上的 rSPR 操作更为接近。即使我们限制为距离 1 的尾部操作(尾部操作的局部版本),连通性仍然存在。此外,我们给出了将一个网络转换为另一个网络所需的(距离 1)尾部操作的数量的界限,这反过来又为 rSPR、rNNI 和 SPR 提供了新的界限(即无根网络上的等效 rSPR)。上限是构造性的,这意味着我们实际上可以为任何一对网络找到长度不超过此长度的序列。最后,我们证明了找到最短的尾部或 rSPR 操作序列是 NP 难的。