National Institutes of Health, Bethesda, MD 20892-1428, USA.
Neuron. 2010 Jan 14;65(1):135-42. doi: 10.1016/j.neuron.2009.12.027.
Pathological behaviors such as problem gambling or shopping are characterized by compulsive choice despite alternative options and negative costs. Reinforcement learning algorithms allow a computation of prediction error, a comparison of actual and expected outcomes, which updates our predictions and influences our subsequent choices. Using a reinforcement learning model, we show data consistent with the idea that dopamine agonists in susceptible individuals with Parkinson's disease increase the rate of learning from gain outcomes. Dopamine agonists also increase striatal prediction error activity, thus signifying a "better than expected" outcome. Thus, our findings are consistent with a model whereby a distorted estimation of the gain cue underpins a choice bias toward gains.
病理性行为,如赌博或购物成瘾,其特征是尽管有其他选择和负面代价,仍会强迫性地做出选择。强化学习算法允许计算预测误差,即实际结果与预期结果的比较,从而更新我们的预测并影响我们随后的选择。我们使用强化学习模型展示的数据与这样一种观点一致,即在帕金森病易感个体中,多巴胺激动剂增加了从收益结果中学习的速度。多巴胺激动剂也增加了纹状体的预测误差活动,从而表示“好于预期”的结果。因此,我们的发现与这样一种模型一致,即对收益线索的扭曲估计是对收益产生选择偏见的基础。