Suppr超能文献

基于 HMM-模糊方法的乳腺癌识别。

Breast-cancer identification using HMM-fuzzy approach.

机构信息

Department of Computer Science and Software Engineering, The University of Melbourne, Victoria 3010, Australia.

出版信息

Comput Biol Med. 2010 Mar;40(3):240-51. doi: 10.1016/j.compbiomed.2009.11.003. Epub 2010 Feb 12.

Abstract

This paper presents an ensemble of feature selection and classification technique for classifying two types of breast lesion, benign and malignant. Features are selected based on their area under the ROC curves (AUC) which are then classified using a hybrid hidden Markov model (HMM)-fuzzy approach. HMM generated log-likelihood values are used to generate minimized fuzzy rules which are further optimized using gradient descent algorithms in order to enhance classification performance. The developed model is applied to Wisconsin breast cancer dataset to test its performance. The results indicate that a combination of selected features and the HMM-fuzzy approach can classify effectively the lesion types using only two fuzzy rules. Our experimental results also indicate that the proposed model can produce better classification accuracy when compared to most other computational tools.

摘要

本文提出了一种特征选择和分类技术的集成,用于对两种类型的乳腺病变,良性和恶性进行分类。特征是根据它们的接收器工作特征曲线下面积(AUC)进行选择的,然后使用混合隐马尔可夫模型(HMM)-模糊方法进行分类。HMM 生成的对数似然值用于生成最小化的模糊规则,然后使用梯度下降算法对其进行进一步优化,以提高分类性能。所开发的模型应用于威斯康星州乳腺癌数据集以测试其性能。结果表明,选择的特征与 HMM-模糊方法的组合可以仅使用两条模糊规则有效地对病变类型进行分类。我们的实验结果还表明,与大多数其他计算工具相比,所提出的模型可以产生更好的分类准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验