Guha Manti, Tang Weigang, Sondheimer Neal, Avadhani Narayan G
Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1055-65. doi: 10.1016/j.bbabio.2010.02.008. Epub 2010 Feb 11.
Pathophysiological conditions causing mitochondrial dysfunction and altered transmembrane potential (psim) initiate a mitochondrial respiratory stress response, also known as mitochondrial retrograde response, in a variety of mammalian cells. An increase in the cytosolic Ca2+ [Ca2+]c as part of this signaling cascade activates Ca2+ responsive phosphatase, calcineurin (Cn). Activation of IGF1R accompanied by increased glycolysis, invasiveness, and resistance to apoptosis is a phenotypic hallmark of C2C12 skeletal muscle cells subjected to this stress. The signaling is associated with activation and increased nuclear translocation of a number of transcription factors including a novel NFkappaB (cRel:p50) pathway, NFAT, CREB and C/EBPdelta. This culminates in the upregulation of a number of nuclear genes including Cathepsin L, RyR1, Glut4 and Akt1. We observed that stress regulated transcription activation of nuclear genes involves a cooperative interplay between NFkappaB (cRel:p50), C/EBPdelta, CREB, and NFAT. Our results show that the functional synergy of these factors requires the stress-activated heterogeneous nuclear ribonucleoprotein, hnRNPA2 as a transcriptional coactivator. We report here that mitochondrial stress leads to induced expression and activation of serine threonine kinase Akt1. Interestingly, we observe that Akt1 phosphorylates hnRNPA2 under mitochondrial stress conditions, which is a crucial step for the recruitment of this coactivator to the stress target promoters and culmination in mitochondrial stress-mediated transcription activation of target genes. We propose that mitochondrial stress plays an important role in tumor progression and emergence of invasive phenotypes.
导致线粒体功能障碍和跨膜电位(Δψm)改变的病理生理状况,在多种哺乳动物细胞中引发线粒体呼吸应激反应,也称为线粒体逆行反应。作为该信号级联反应一部分的胞质Ca2+([Ca2+]c)增加会激活Ca2+反应性磷酸酶钙调神经磷酸酶(Cn)。IGF1R的激活伴随着糖酵解增加、侵袭性增强和对凋亡的抗性,是遭受这种应激的C2C12骨骼肌细胞的表型特征。该信号传导与包括新型NFκB(cRel:p50)途径、NFAT、CREB和C/EBPδ在内的多种转录因子的激活及核转位增加有关。这最终导致包括组织蛋白酶L、兰尼碱受体1(RyR1)、葡萄糖转运蛋白4(Glut4)和Akt1在内的多种核基因上调。我们观察到应激调节的核基因转录激活涉及NFκB(cRel:p50)、C/EBPδ、CREB和NFAT之间的协同相互作用。我们的结果表明,这些因子的功能协同作用需要应激激活的不均一核核糖核蛋白hnRNPA2作为转录共激活因子。我们在此报告,线粒体应激导致丝氨酸苏氨酸激酶Akt1的诱导表达和激活。有趣的是,我们观察到在应激条件下Akt1会使hnRNPA2磷酸化,这是该共激活因子募集到应激靶启动子并最终导致线粒体应激介导的靶基因转录激活的关键步骤。我们提出线粒体应激在肿瘤进展和侵袭性表型的出现中起重要作用。