Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Art and Sciences, North Carolina Central University, Durham, NC 27707, USA.
Int J Biochem Cell Biol. 2013 Mar;45(3):604-11. doi: 10.1016/j.biocel.2012.11.022. Epub 2012 Dec 7.
Mitochondrial biogenesis is activated by nuclear encoded transcription co-activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is regulated by several upstream factors including protein kinase A and Akt/protein kinase B. We have previously shown that selenoprotein H enhances the levels of nuclear regulators for mitochondrial biogenesis, increases mitochondrial mass and improves mitochondrial respiratory rate, under physiological condition. Furthermore, overexpression of selenoprotein H protects neuronal HT22 cells from ultraviolet B irradiation-induced cell damage by lowering reactive oxygen species production, and inhibiting activation of caspase-3 and -9, as well as p53. The objective of this study is to identify the cell signaling pathways by which selenoprotein H initiates mitochondrial biogenesis. We first confirmed our previous observation that selenoprotein H transfected HT22 cells increased the protein levels of nuclear-encoded mitochondrial biogenesis factors, peroxisome proliferator-activated receptor γ coactivator-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. We then observed that total and phosphorylation of protein kinase A, Akt/protein kinase B and cyclic adenosine monophosphate response element-binding protein (CREB) were significantly increased in selenoprotein H transfected cells compared to vector transfected HT22 cells. To verify whether the observed stimulating effects on mitochondrial biogenesis pathways are caused by selenoprotein H and mediated through CREB, we knocked down selenoprotein H mRNA level using siRNA and inhibited CREB with napthol AS-E phosphate in selenoprotein H transfected cells and repeated the measurements of the aforementioned biomarkers. Our results revealed that silencing of selenoprotein H not only decreased the protein levels of PGC-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A, but also decreased the total and phosphorylation levels of protein kinase A, protein kinase B, and CREB. Similarly, CREB inhibition reduced CREB activation and PGC-1α protein levels in selenoprotein H transfected cells. Moreover, selenoprotein H transfection increased the activity of mitochondrial complexes and prevented the ultraviolet B induced fall of mitochondrial membrane potential. We conclude that the effects of selenoprotein H on mitochondrial biogenesis and mitochondrial function are probably mediated through protein kinase A-CREB-PGC-1α and Akt/protein kinase B-CREB-PGC-1α pathways.
线粒体生物发生是由核编码转录共激活因子过氧化物酶体增殖物激活受体 γ 共激活因子 1α(PGC-1α)激活的,其受多种上游因子调节,包括蛋白激酶 A 和 Akt/蛋白激酶 B。我们之前已经表明,在生理条件下,硒蛋白 H 增强核调节剂对于线粒体生物发生的水平,增加线粒体质量并改善线粒体呼吸速率。此外,过表达硒蛋白 H 通过降低活性氧物质的产生,抑制半胱天冬酶-3 和 -9 的激活以及 p53 的激活,来保护神经元 HT22 细胞免受紫外线 B 照射诱导的细胞损伤。本研究的目的是确定硒蛋白 H 启动线粒体生物发生的细胞信号通路。我们首先证实了我们之前的观察结果,即转染硒蛋白 H 的 HT22 细胞增加了核编码线粒体生物发生因子的蛋白水平,过氧化物酶体增殖物激活受体 γ 共激活因子 1α、核呼吸因子 1 和线粒体转录因子 A。然后,我们观察到与载体转染的 HT22 细胞相比,硒蛋白 H 转染细胞中的蛋白激酶 A 的总蛋白和磷酸化、Akt/蛋白激酶 B 和环腺苷酸反应元件结合蛋白(CREB)的总蛋白和磷酸化水平显著增加。为了验证观察到的对线粒体生物发生途径的刺激作用是否是由硒蛋白 H 引起并通过 CREB 介导的,我们使用 siRNA 敲低硒蛋白 H mRNA 水平,并在硒蛋白 H 转染细胞中用萘基 AS-E 磷酸盐抑制 CREB,并重复上述生物标志物的测量。我们的结果表明,硒蛋白 H 的沉默不仅降低了 PGC-1α、核呼吸因子 1 和线粒体转录因子 A 的蛋白水平,还降低了蛋白激酶 A、蛋白激酶 B 和 CREB 的总蛋白和磷酸化水平。同样,CREB 抑制降低了硒蛋白 H 转染细胞中的 CREB 激活和 PGC-1α 蛋白水平。此外,硒蛋白 H 转染增加了线粒体复合物的活性并防止了紫外线 B 诱导的线粒体膜电位下降。我们得出结论,硒蛋白 H 对线粒体生物发生和线粒体功能的影响可能是通过蛋白激酶 A-CREB-PGC-1α 和 Akt/蛋白激酶 B-CREB-PGC-1α 途径介导的。