INRA, UR909, Nutrition et Régulation Lipidique des fonctions Cérébrales, F-78352 Jouy-en Josas, France.
Neurochem Int. 2010 Apr;56(5):703-10. doi: 10.1016/j.neuint.2010.02.006. Epub 2010 Feb 11.
Several in vivo studies suggest that docosahexaenoic acid (22:6 n-3), the main n-3 long-chain polyunsaturated fatty acids (LC-PUFA) of brain membranes, could be an important regulator of brain energy metabolism by affecting glucose utilization and the density of the two isoforms of the glucose transporter-1 (GLUT1) (endothelial and astrocytic). This study was conducted to test the hypothesis that 22:6 n-3 in membranes may modulate glucose metabolism in brain endothelial cells. It compared the impact of 22:6 n-3 and the other two main LC-PUFA, arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3), on fatty acid composition of membrane phospholipids, glucose uptake and expression of 55-kDa GLUT1 isoform in two models of rat brain endothelial cells (RBEC), in primary culture and in the immortalized rat brain endothelial cell line RBE4. Without PUFA supplementation, both types of cerebral endothelial cells were depleted in 22:6 n-3, RBE4 being also particularly low in 20:4 n-6. After exposure to supplemental 20:4 n-6, 20:5 n-3 or 22:6 n-3 (15microM, i.e. a physiological dose), RBEC and RBE4 avidly incorporated these PUFA into their membrane phospholipids thereby resembling physiological conditions, i.e. the PUFA content of rat cerebral microvessels. However, RBE4 were unable to incorporate physiological level of 20:4 n-6. Basal glucose transport in RBEC (rate of [(3)H]-3-o-methylglucose uptake) was increased after 20:5 n-3 or 22:6 n-3 supplementation by 50% and 35%, respectively, whereas it was unchanged with 20:4 n-6. This increase of glucose transport was associated with an increased GLUT1 protein, while GLUT1 mRNA was not affected. The different PUFA did not impact on glucose uptake in RBE4. Due to alterations in n-6 PUFA metabolism and weak expression of GLUT1, RBE4 seems to be less adequate than RBEC to study PUFA metabolism and glucose transport in brain endothelial cells. Physiological doses of n-3 LC-PUFA have a direct and positive effect on glucose transport and GLUT1 density in RBEC that could partly explain decreased brain glucose utilization in n-3 PUFA-deprived rats.
几项体内研究表明,二十二碳六烯酸(22:6n-3)是脑膜中主要的 n-3 长链多不饱和脂肪酸(LC-PUFA),可能通过影响葡萄糖利用和两种葡萄糖转运蛋白-1(GLUT1)同工型的密度(内皮细胞和星形胶质细胞)来成为大脑能量代谢的重要调节剂。本研究旨在检验这样一个假设,即膜中的 22:6n-3 可能调节脑内皮细胞中的葡萄糖代谢。它比较了 22:6n-3 和其他两种主要的 LC-PUFA,花生四烯酸(20:4n-6)和二十碳五烯酸(20:5n-3)对两种大鼠脑内皮细胞(RBEC),即原代培养和永生化大鼠脑内皮细胞系 RBE4 中膜磷脂脂肪酸组成、葡萄糖摄取和 55kDaGLUT1 同工型表达的影响。在没有 PUFA 补充的情况下,两种类型的脑内皮细胞都耗尽了 22:6n-3,而 RBE4 中 20:4n-6 的含量也特别低。在暴露于补充的 20:4n-6、20:5n-3 或 22:6n-3(15μM,即生理剂量)后,RBEC 和 RBE4 会将这些 PUFA 大量掺入其膜磷脂中,从而类似于生理条件,即大鼠脑微血管的 PUFA 含量。然而,RBE4 无法掺入生理水平的 20:4n-6。RBEC 的基础葡萄糖转运([3H]-3-邻甲基葡萄糖摄取率)在 20:5n-3 或 22:6n-3 补充后分别增加了 50%和 35%,而 20:4n-6 则没有变化。葡萄糖转运的增加与 GLUT1 蛋白的增加有关,而 GLUT1mRNA 不受影响。不同的 PUFA 对 RBE4 的葡萄糖摄取没有影响。由于 n-6PUFA 代谢的改变和 GLUT1 的弱表达,RBE4 似乎不如 RBEC 适合研究脑内皮细胞中 PUFA 代谢和葡萄糖转运。生理剂量的 n-3LC-PUFA 对 RBEC 中的葡萄糖转运和 GLUT1 密度有直接的积极影响,这可以部分解释在 n-3PUFA 剥夺的大鼠中脑葡萄糖利用减少的原因。