Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, The University of Edinburgh, The Kings Buildings, West Mains Road, Edinburgh EH93JT, UK.
Int J Parasitol. 2010 Jul;40(8):951-61. doi: 10.1016/j.ijpara.2010.02.003. Epub 2010 Feb 12.
Despite many decades of research, no registered vaccine against the pathogenic blood stages of the malaria parasite exists, translating into the loss of many hundreds of thousands of young lives each year in tropical Africa. Although many parasite proteins have been shown to induce immune responses in the host, proof for their induction of protective immunity is still lacking. We previously reported a novel genetic approach called linkage group selection (LGS) for rapid identification of target antigens of strain-specific protective immunity (SSPI) against malaria. In preliminary LGS experiments, we crossed two genetically distinct strains of Plasmodium chabaudi chabaudi and subjected their progeny to selection in strain-specifically immunised mice, measuring the effects of SSPI selection with low coverage/resolution genetic markers. In the present study, through application of high coverage/resolution, single nucleotide polymorphism (SNP) markers spanning all 14 parasite chromosomes, we analysed 35 SSPI selection events on different populations of progeny parasites. Here we report a comprehensive high resolution genome-wide analysis of the effects of strain-specific immune selection on blood stage parasites. Our analyses consistently identify a single genomic region spanning approximately 79kb on chromosome 8 as the region controlling SSPI. Within this region, one gene (that of merozoite surface protein 1, MSP-1) accounted for >60% of genetic polymorphism and was most frequently under greatest reduction under SSPI. These results, combined with those of an independent LGS analysis of a different genetic cross with different parental strains, demonstrate that more than any other locus, the gene for MSP-1 determines the effect of strain-specific protective immunity against malaria in these host-parasite combinations. Our results provide unique insight into the precise timing of the parasite killing immune response against progeny parasites carrying specific alleles of MSP-1; these findings pave the way for investigating which part(s) of this highly polymorphic molecule mediate the protective immune response.
尽管已经进行了几十年的研究,但仍没有注册的疟疾寄生虫致病血期疫苗,这导致每年在热带非洲有数十万人失去生命。尽管许多寄生虫蛋白已被证明能在宿主中诱导免疫反应,但仍缺乏其诱导保护性免疫的证据。我们之前报道了一种称为连锁群选择(LGS)的新型遗传方法,用于快速鉴定针对疟疾的菌株特异性保护性免疫(SSPI)的靶抗原。在初步的 LGS 实验中,我们将两种遗传上不同的恶性疟原虫 chabaudi chabaudi 菌株杂交,并在特异性免疫的小鼠中对其后代进行选择,用低覆盖率/分辨率的遗传标记测量 SSPI 选择的效果。在本研究中,我们应用了高覆盖率/分辨率、跨越寄生虫 14 条染色体的单核苷酸多态性(SNP)标记,对不同后代寄生虫种群的 35 个 SSPI 选择事件进行了分析。在这里,我们报告了一个针对血期寄生虫的菌株特异性免疫选择的全基因组高分辨率综合分析。我们的分析一致地确定了一个跨越大约 79kb 的染色体 8 上的单一基因组区域是控制 SSPI 的区域。在这个区域内,一个基因(裂殖子表面蛋白 1,MSP-1 的基因)占遗传多态性的 60%以上,并且在 SSPI 下最常受到最大的减少。这些结果与来自具有不同亲本菌株的不同遗传杂交的独立 LGS 分析的结果相结合,表明 MSP-1 的基因比任何其他基因都更能决定针对这些宿主-寄生虫组合中的疟疾的菌株特异性保护性免疫的效果。我们的结果为针对携带特定 MSP-1 等位基因的后代寄生虫的寄生虫杀伤免疫反应的精确时间提供了独特的见解;这些发现为研究该高度多态分子的哪一部分(或哪些部分)介导保护性免疫反应铺平了道路。