Suppr超能文献

Eg5 驱动蛋白通过与 ATP 水解的化学步骤相偶联实现实时结构转变。

Real-time structural transitions are coupled to chemical steps in ATP hydrolysis by Eg5 kinesin.

机构信息

Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.

出版信息

J Biol Chem. 2010 Apr 9;285(15):11073-7. doi: 10.1074/jbc.C110.103762. Epub 2010 Feb 12.

Abstract

At the biochemical level, motor proteins are enzymatic molecules that function by converting chemical energy into mechanical motion. The key element for energy transduction and a major unresolved question common for all motor proteins is the coordination between the chemical and conformational steps in ATP hydrolysis. Here we show time-lapse monitoring of an in vitro ATP hydrolysis reaction by the motor domain of a human Kinesin-5 protein (Eg5) using difference Fourier transform infrared spectroscopy and UV photolysis of caged ATP. In this first continuous observation of a biological reaction coordinate from substrate to product, direct spectral markers for two catalytic events are measured: proton abstraction from nucleophilic water by the catalytic base and formation of the inorganic phosphate leaving group. Simultaneous examination of conformational switching in Eg5, in parallel with catalytic steps, shows structural transitions in solution consistent with published crystal structures of the prehydrolytic and ADP-bound states. In addition, we detect structural modifications in the Eg5 motor domain during bond cleavage between the beta- and gamma-phosphates of ATP. This conclusion challenges mechanochemical models for motor proteins that utilize only two stages of the catalytic cycle to drive force and motion.

摘要

在生化层面上,运动蛋白是通过将化学能转化为机械运动来发挥作用的酶分子。能量转导的关键要素以及所有运动蛋白共同存在的一个主要未解决问题是在 ATP 水解的化学和构象步骤之间的协调。在这里,我们使用差示傅里叶变换红外光谱法和笼状 ATP 的紫外线光解,实时监测了人类 Kinesin-5 蛋白(Eg5)的运动结构域的体外 ATP 水解反应。这是首次连续观察从底物到产物的生物反应坐标,直接测量了两个催化事件的光谱标记物:催化碱从亲核水中提取质子和形成无机磷酸盐离去基团。同时检查 Eg5 的构象转换,与催化步骤平行,显示出与预水解和 ADP 结合状态的晶体结构一致的溶液中的结构转变。此外,我们在 ATP 的β-和γ-磷酸之间的键断裂过程中检测到 Eg5 运动结构域的结构修饰。这一结论挑战了仅利用催化循环的两个阶段来驱动力和运动的运动蛋白的机械化学模型。

相似文献

1
Real-time structural transitions are coupled to chemical steps in ATP hydrolysis by Eg5 kinesin.
J Biol Chem. 2010 Apr 9;285(15):11073-7. doi: 10.1074/jbc.C110.103762. Epub 2010 Feb 12.
2
ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism.
J Biol Chem. 2010 Feb 19;285(8):5859-67. doi: 10.1074/jbc.M109.071233. Epub 2009 Dec 15.
4
Dimeric Eg5 maintains processivity through alternating-site catalysis with rate-limiting ATP hydrolysis.
J Biol Chem. 2006 Dec 22;281(51):39444-54. doi: 10.1074/jbc.M608056200. Epub 2006 Oct 23.
5
Structural snapshots of the kinesin-2 OSM-3 along its nucleotide cycle: implications for the ATP hydrolysis mechanism.
FEBS Open Bio. 2021 Mar;11(3):564-577. doi: 10.1002/2211-5463.13101. Epub 2021 Feb 28.
6
Exploring the intermediate states of ADP-ATP exchange: a simulation study on Eg5.
J Phys Chem B. 2011 Feb 10;115(5):784-95. doi: 10.1021/jp107255t. Epub 2010 Dec 30.
7
The crystal structure and biochemical characterization of Kif15: a bifunctional molecular motor involved in bipolar spindle formation and neuronal development.
Acta Crystallogr D Biol Crystallogr. 2014 Jan;70(Pt 1):123-33. doi: 10.1107/S1399004713028721. Epub 2013 Dec 24.
8
Structural evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F1-ATPase from bovine heart mitochondria.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11139-43. doi: 10.1073/pnas.1207587109. Epub 2012 Jun 25.
9
A metal switch for controlling the activity of molecular motor proteins.
Nat Struct Mol Biol. 2011 Dec 25;19(1):122-7. doi: 10.1038/nsmb.2190.
10
Getting in sync with dimeric Eg5. Initiation and regulation of the processive run.
J Biol Chem. 2008 Jan 25;283(4):2078-87. doi: 10.1074/jbc.M708354200. Epub 2007 Nov 25.

引用本文的文献

2
The yeast kinesin-5 Cin8 interacts with the microtubule in a noncanonical manner.
J Biol Chem. 2017 Sep 1;292(35):14680-14694. doi: 10.1074/jbc.M117.797662. Epub 2017 Jul 12.
4
Kinesin-5: cross-bridging mechanism to targeted clinical therapy.
Gene. 2013 Dec 1;531(2):133-49. doi: 10.1016/j.gene.2013.08.004. Epub 2013 Aug 14.
6
Allosteric drug discrimination is coupled to mechanochemical changes in the kinesin-5 motor core.
J Biol Chem. 2010 Jun 11;285(24):18650-61. doi: 10.1074/jbc.M109.092072. Epub 2010 Mar 18.

本文引用的文献

1
ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism.
J Biol Chem. 2010 Feb 19;285(8):5859-67. doi: 10.1074/jbc.M109.071233. Epub 2009 Dec 15.
3
Spectral signatures of the pentagonal water cluster in bacteriorhodopsin.
Chemphyschem. 2008 Dec 22;9(18):2703-7. doi: 10.1002/cphc.200800473.
4
Importance of van der Waals Interactions in QM/MM Simulations.
J Phys Chem B. 2004 May 20;108(20):6467-78. doi: 10.1021/jp037992q.
5
Infrared studies reveal unique vibrations associated with the PGK-ATP-3-PG ternary complex.
Biochemistry. 2008 Jan 8;47(1):84-91. doi: 10.1021/bi701723c. Epub 2007 Dec 14.
6
Structures and spectral signatures of protonated water networks in bacteriorhodopsin.
Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):6980-5. doi: 10.1073/pnas.0609229104. Epub 2007 Apr 16.
7
Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy.
Nature. 2006 Jan 5;439(7072):109-12. doi: 10.1038/nature04231. Epub 2005 Nov 9.
8
Monastrol inhibition of the mitotic kinesin Eg5.
J Biol Chem. 2005 Apr 1;280(13):12658-67. doi: 10.1074/jbc.M413140200. Epub 2005 Jan 23.
9
Role of betaAsn-243 in the phosphate-binding subdomain of catalytic sites of Escherichia coli F(1)-ATPase.
J Biol Chem. 2004 Oct 29;279(44):46057-64. doi: 10.1074/jbc.M407608200. Epub 2004 Aug 20.
10
ATP hydrolysis in the betaTP and betaDP catalytic sites of F1-ATPase.
Biophys J. 2004 Nov;87(5):2954-67. doi: 10.1529/biophysj.104.046128. Epub 2004 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验