Bell Kayla M, Cha Hyo Keun, Sindelar Charles V, Cochran Jared C
From the Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405.
the Department of Cell Biology, Yale School of Medicine, and.
J Biol Chem. 2017 Sep 1;292(35):14680-14694. doi: 10.1074/jbc.M117.797662. Epub 2017 Jul 12.
Kinesin motors play central roles in establishing and maintaining the mitotic spindle during cell division. Unlike most other kinesins, Cin8, a kinesin-5 motor in can move bidirectionally along microtubules, switching directionality according to biochemical conditions, a behavior that remains largely unexplained. To this end, we used biochemical rate and equilibrium constant measurements as well as cryo-electron microscopy methodologies to investigate the microtubule interactions of the Cin8 motor domain. These experiments unexpectedly revealed that, whereas Cin8 ATPase kinetics fell within measured ranges for kinesins (especially kinesin-5 proteins), approximately four motors can bind each αβ-tubulin dimer within the microtubule lattice. This result contrasted with those observations on other known kinesins, which can bind only a single "canonical" site per tubulin dimer. Competition assays with human kinesin-5 (Eg5) only partially abrogated this behavior, indicating that Cin8 binds microtubules not only at the canonical site, but also one or more separate ("noncanonical") sites. Moreover, we found that deleting the large, class-specific insert in the microtubule-binding loop 8 reverts Cin8 to one motor per αβ-tubulin in the microtubule. The novel microtubule-binding mode of Cin8 identified here provides a potential explanation for Cin8 clustering along microtubules and potentially may contribute to the mechanism for direction reversal.
驱动蛋白在细胞分裂过程中建立和维持有丝分裂纺锤体方面发挥着核心作用。与大多数其他驱动蛋白不同,Cin8是一种驱动蛋白-5,它可以沿着微管双向移动,并根据生化条件切换方向,这种行为在很大程度上仍未得到解释。为此,我们使用生化速率和平衡常数测量以及冷冻电子显微镜方法来研究Cin8运动结构域与微管的相互作用。这些实验意外地发现,虽然Cin8的ATP酶动力学落在驱动蛋白(特别是驱动蛋白-5蛋白)的测量范围内,但在微管晶格中,每个αβ-微管蛋白二聚体大约可以结合四个驱动蛋白。这一结果与其他已知驱动蛋白的观察结果形成对比,其他驱动蛋白每个微管蛋白二聚体只能结合一个“典型”位点。用人驱动蛋白-5(Eg5)进行的竞争试验只能部分消除这种行为,这表明Cin8不仅在典型位点结合微管,还在一个或多个单独的(“非典型”)位点结合。此外,我们发现删除微管结合环8中较大的、特定类别的插入片段后,微管中每个αβ-微管蛋白上的Cin8就会恢复为一个驱动蛋白。这里确定的Cin8新的微管结合模式为Cin沿微管聚集提供了一个潜在的解释,并且可能有助于方向反转机制。