Suppr超能文献

利用代谢工程化的大肠杆菌菌株发酵甘油生产琥珀酸。

Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli.

机构信息

Department of Microbiology and Cell Science, University of Florida, Box 110700, Gainesville, FL 32611, USA.

出版信息

Appl Environ Microbiol. 2010 Apr;76(8):2397-401. doi: 10.1128/AEM.02902-09. Epub 2010 Feb 12.

Abstract

The fermentative metabolism of Escherichia coli was reengineered to efficiently convert glycerol to succinate under anaerobic conditions without the use of foreign genes. Formate and ethanol were the dominant fermentation products from glycerol in wild-type Escherichia coli ATCC 8739, followed by succinate and acetate. Inactivation of pyruvate formate-lyase (pflB) in the wild-type strain eliminated the production of formate and ethanol and reduced the production of acetate. However, this deletion slowed growth and decreased cell yields due to either insufficient energy production or insufficient levels of electron acceptors. Reversing the direction of the gluconeogenic phosphoenolpyruvate carboxykinase reaction offered an approach to solve both problems, conserving energy as an additional ATP and increasing the pool of electron acceptors (fumarate and malate). Recruiting this enzyme through a promoter mutation (pck*) to increase expression also increased the rate of growth, cell yield, and succinate production. Presumably, the high NADH/NAD(+) ratio served to establish the direction of carbon flow. Additional mutations were also beneficial. Glycerol dehydrogenase and the phosphotransferase-dependent dihydroxyacetone kinase are regarded as the primary route for glycerol metabolism under anaerobic conditions. However, this is not true for succinate production by engineered strains. Deletion of the ptsI gene or any other gene essential for the phosphotranferase system was found to increase succinate yield. Deletion of pflB in this background provided a further increase in the succinate yield. Together, these three core mutations (pck*, ptsI, and pflB) effectively redirected carbon flow from glycerol to succinate at 80% of the maximum theoretical yield during anaerobic fermentation in mineral salts medium.

摘要

在无氧条件下,通过对大肠杆菌的发酵代谢进行重新设计,成功实现了甘油到琥珀酸的高效转化,且无需使用外源基因。野生型大肠杆菌 ATCC 8739 利用甘油发酵时,主要产物为甲酸盐和乙醇,随后是琥珀酸和乙酸。在野生型菌株中敲除丙酮酸甲酸裂解酶(pflB)可消除甲酸盐和乙醇的生成,并减少乙酸的生成。然而,这种缺失会因能量生成不足或电子受体水平不足而减缓生长并降低细胞产量。使糖异生磷酸烯醇丙酮酸羧激酶反应的方向反转提供了一种解决这两个问题的方法,可作为额外的 ATP 来保存能量,并增加电子受体(延胡索酸和苹果酸)的池。通过启动子突变(pck*)招募这种酶以增加表达水平也会提高生长速率、细胞产量和琥珀酸的产量。推测高 NADH/NAD+ 比值有助于建立碳流的方向。其他突变也有益。甘油脱氢酶和磷酸转移酶依赖性二羟丙酮激酶被认为是厌氧条件下甘油代谢的主要途径。然而,对于工程菌株生产琥珀酸来说并非如此。发现缺失 ptsI 基因或任何其他对磷酸转移酶系统必不可少的基因都会增加琥珀酸的产量。在这种背景下敲除 pflB 可进一步提高琥珀酸的产量。这三个核心突变(pck*、ptsI 和 pflB)共同作用,可在矿盐培养基的厌氧发酵中,将碳流从甘油有效地重新定向到琥珀酸,达到最大理论产量的 80%。

相似文献

1
Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli.
Appl Environ Microbiol. 2010 Apr;76(8):2397-401. doi: 10.1128/AEM.02902-09. Epub 2010 Feb 12.
2
Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.
Biotechnol Bioeng. 2008 Dec 1;101(5):881-93. doi: 10.1002/bit.22005.
3
Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli.
Appl Microbiol Biotechnol. 2012 May;94(4):959-68. doi: 10.1007/s00253-012-3896-4.
4
Enhanced succinate production from glycerol by engineered Escherichia coli strains.
Bioresour Technol. 2016 Oct;218:217-23. doi: 10.1016/j.biortech.2016.06.090. Epub 2016 Jun 25.
5
Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli.
Biotechnol Bioeng. 2009 May 1;103(1):148-61. doi: 10.1002/bit.22246.
8
Reengineering Escherichia coli for Succinate Production in Mineral Salts Medium.
Appl Environ Microbiol. 2009 Dec;75(24):7807-13. doi: 10.1128/AEM.01758-09. Epub 2009 Oct 16.
10
Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol.
Appl Environ Microbiol. 2010 Jul;76(13):4327-36. doi: 10.1128/AEM.00664-10. Epub 2010 May 14.

引用本文的文献

3
Production of γ-terpinene by metabolically engineered using glycerol as feedstock.
RSC Adv. 2018 Sep 3;8(54):30851-30859. doi: 10.1039/c8ra02076k. eCollection 2018 Aug 30.
4
DsrA Modulates Central Carbon Metabolism and Redox Balance by Directly Repressing Expression in Typhimurium.
Microbiol Spectr. 2022 Feb 23;10(1):e0152221. doi: 10.1128/spectrum.01522-21. Epub 2022 Feb 2.
5
In silico and in vivo analyses reveal key metabolic pathways enabling the fermentative utilization of glycerol in Escherichia coli.
Microb Biotechnol. 2022 Jan;15(1):289-304. doi: 10.1111/1751-7915.13938. Epub 2021 Oct 26.
7
Design for Systems-Based Metabolic Engineering for the Bioconversion of Valuable Compounds From Industrial By-Products.
Front Genet. 2021 Mar 26;12:633073. doi: 10.3389/fgene.2021.633073. eCollection 2021.
9
Exogenous l-proline improved lipid production on crude glycerol.
Biotechnol Biofuels. 2020 Sep 14;13:159. doi: 10.1186/s13068-020-01798-6. eCollection 2020.
10
Effect of dissolved oxygen on L-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method.
J Ind Microbiol Biotechnol. 2020 Mar;47(3):287-297. doi: 10.1007/s10295-020-02264-w. Epub 2020 Feb 12.

本文引用的文献

1
Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli.
Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20180-5. doi: 10.1073/pnas.0905396106. Epub 2009 Nov 16.
2
Reengineering Escherichia coli for Succinate Production in Mineral Salts Medium.
Appl Environ Microbiol. 2009 Dec;75(24):7807-13. doi: 10.1128/AEM.01758-09. Epub 2009 Oct 16.
3
Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli.
Biotechnol Bioeng. 2009 May 1;103(1):148-61. doi: 10.1002/bit.22246.
4
Biotransformation of glycerol to D-glyceric acid by Acetobacter tropicalis.
Appl Microbiol Biotechnol. 2009 Jan;81(6):1033-9. doi: 10.1007/s00253-008-1737-2. Epub 2008 Oct 14.
5
Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products.
Metab Eng. 2008 Nov;10(6):340-51. doi: 10.1016/j.ymben.2008.08.005. Epub 2008 Sep 9.
6
Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.
Biotechnol Bioeng. 2008 Dec 1;101(5):881-93. doi: 10.1002/bit.22005.
7
A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli.
Metab Eng. 2008 Sep;10(5):234-45. doi: 10.1016/j.ymben.2008.05.001. Epub 2008 May 27.
8
Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals.
Appl Environ Microbiol. 2008 Feb;74(4):1124-35. doi: 10.1128/AEM.02192-07. Epub 2007 Dec 21.
9
Poly(3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures.
Appl Microbiol Biotechnol. 2008 Jan;77(6):1337-43. doi: 10.1007/s00253-007-1255-7. Epub 2007 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验