Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL 61801, USA.
J Bacteriol. 2010 Apr;192(8):2140-9. doi: 10.1128/JB.00016-10. Epub 2010 Feb 12.
Salmonella enterica serovar Typhimurium replicates in macrophages, where it is subjected to antimicrobial substances, including superoxide, antimicrobial peptides, and proteases. The bacterium produces two periplasmic superoxide dismutases, SodCI and SodCII. Although both are expressed during infection, only SodCI contributes to virulence in the mouse by combating phagocytic superoxide. The differential contribution to virulence is at least partially due to inherent differences in the SodCI and SodCII proteins that are independent of enzymatic activity. SodCII is protease sensitive, and like other periplasmic proteins, it is released by osmotic shock. In contrast, SodCI is protease resistant and is retained within the periplasm after osmotic shock, a phenomenon that we term "tethering." We hypothesize that in the macrophage, antimicrobial peptides transiently disrupt the outer membrane. SodCII is released and/or phagocytic proteases gain access to the periplasm, and SodCII is degraded. SodCI is tethered within the periplasm and is protease resistant, thereby remaining to combat superoxide. Here we test aspects of this model. SodCII was released by the antimicrobial peptide polymyxin B or a mouse macrophage antimicrobial peptide (CRAMP), while SodCI remained tethered within the periplasm. A Salmonella pmrA constitutive mutant no longer released SodCII in vitro. Moreover, in the constitutive pmrA background, SodCII could contribute to survival of Salmonella during infection. SodCII also provided a virulence benefit in mice genetically defective in production of CRAMP. Thus, consistent with our model, protecting the outer membrane against antimicrobial peptides allows SodCII to contribute to virulence in vivo. These data also suggest direct in vivo cooperative interactions between macrophage antimicrobial effectors.
鼠伤寒沙门氏菌血清型在巨噬细胞中复制,在巨噬细胞中,它会受到包括超氧化物、抗菌肽和蛋白酶在内的抗菌物质的攻击。该细菌产生两种周质超氧化物歧化酶,SodCI 和 SodCII。尽管这两种酶在感染期间都有表达,但只有 SodCI 通过对抗吞噬细胞产生的超氧化物来帮助细菌在小鼠中发挥毒力。这种对毒力的不同贡献至少部分是由于 SodCI 和 SodCII 蛋白固有的差异所致,而这种差异与酶活性无关。SodCII 对蛋白酶敏感,并且像其他周质蛋白一样,它会在渗透休克时被释放。相比之下,SodCI 对蛋白酶具有抗性,并且在渗透休克后仍保留在周质中,我们将这种现象称为“系留”。我们假设,在巨噬细胞中,抗菌肽会暂时破坏外膜。SodCII 被释放和/或吞噬蛋白酶进入周质,然后 SodCII 被降解。SodCI 被系留在周质中,对蛋白酶具有抗性,从而仍然可以抵抗超氧化物。在这里,我们测试了该模型的一些方面。抗菌肽多粘菌素 B 或一种鼠巨噬细胞抗菌肽 (CRAMP) 可释放 SodCII,而 SodCI 则被系留在周质中。鼠伤寒沙门氏菌 pmrA 组成型突变体不再在体外释放 SodCII。此外,在组成型 pmrA 背景下,SodCII 可以帮助沙门氏菌在感染期间存活。SodCII 也为 CRAMP 产生基因缺陷的小鼠提供了毒力益处。因此,与我们的模型一致,保护外膜免受抗菌肽的攻击可以使 SodCII 有助于体内的毒力。这些数据还表明,巨噬细胞抗菌效应物之间存在直接的体内协同相互作用。