金属修饰和垂直排列碳纳米管传感器阵列用于垃圾填埋气监测应用。
Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
机构信息
ENEA, Department of Physical Technologies and New Materials, PO Box 51 Br-4, I-72100 Brindisi, Italy.
出版信息
Nanotechnology. 2010 Mar 12;21(10):105501. doi: 10.1088/0957-4484/21/10/105501. Epub 2010 Feb 15.
Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 degrees C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO(2), CH(4), H(2), NH(3), CO and NO(2) has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO(2) presence in the multicomponent mixture LFG. The NO(2) gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO(2) concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO(2) gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 degrees C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 microm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by providing minimal sub-ppm level detection, e.g., download up to 100 ppb NO(2), at the sensor temperature of 150 degrees C. The gas sensitivity of the CNT sensor array depends on operating temperature, showing a lower optimal temperature of maximum sensitivity for the metal-decorated CNT sensors compared to unmodified CNT sensors. Results indicate that the recovery mechanisms in the CNT chemiresistors can be altered by a rapid heating pulse from room temperature to about 110 degrees C. A comparison of the NO(2) gas sensitivity for the chemiresistors based on disorderly networked CNTs and vertically aligned CNTs is also reported. Cross-sensitivity towards relative humidity of the CNT sensors array is investigated. Finally, the sensing properties of the metal-decorated and vertically aligned CNT sensor arrays are promising to monitor gas events in the LFG for practical applications with low power consumption and moderate sensor temperature.
采用射频等离子体增强化学气相沉积(RF-PECVD)技术,在 Fe 涂层的低成本氧化铝衬底上合成了垂直排列的碳纳米管(CNT)层。为了在 150°C 的温度下监测垃圾填埋气(LFG),开发了一种基于 CNT 的小型化气体传感器阵列。该传感器阵列由 4 个具有未修饰 CNT 的传感元件和负载有 5nm 名义厚度溅射纳米团簇的 CNT 组成,负载的金属分别为铂(Pt)、钌(Ru)和银(Ag)。通过基于主成分分析(PCA)的阵列传感器响应和模式识别,对由 CO(2)、CH(4)、H(2)、NH(3)、CO 和 NO(2) 组成的多组分气体混合物的化学分析。PCA 结果表明,金属修饰和垂直排列的 CNT 传感器阵列能够区分多组分 LFG 中的 NO(2)存在。NO(2)在混合物 LFG 中的气体检测被证明非常敏感,例如:在 CNT:Ru 传感器中,当 LFG 中 NO(2)浓度分别为 3.3ppm 和 330ppb 时,电阻的相对变化分别为 1.50%和 0.55%,在传感器温度为 150°C 时,测量范围很宽,从 0.33 到 3.3ppm。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和拉曼光谱对 CNT 网络的形态和结构进行了表征。多壁 CNT 束的垂直排列纳米结构出现,高度约为 10 微米,单管直径在 5-35nm 范围内变化。拉曼光谱 D-峰和 G-峰的强度比表明 CNT 网络中存在无序和缺陷。修饰 CNT 顶表面的金属(Pt、Ru、Ag)纳米团簇的尺寸在 5-50nm 范围内变化。基于金属修饰 CNT-化学电阻器阵列中电荷转移传感机制的功能表征表明,通过提供最小亚 ppm 级别的检测(例如,在传感器温度为 150°C 时,检测下限可达 100ppb 的 NO(2)),具有高灵敏度。CNT 传感器阵列的气体灵敏度取决于工作温度,与未修饰 CNT 传感器相比,金属修饰 CNT 传感器的最佳灵敏度温度更低。结果表明,CNT 化学电阻器中的恢复机制可以通过从室温快速加热到约 110°C 的脉冲来改变。还报告了基于无序网络 CNT 和垂直排列 CNT 的化学电阻器的 NO(2)气体灵敏度比较。研究了 CNT 传感器阵列对相对湿度的交叉灵敏度。最后,金属修饰和垂直排列 CNT 传感器阵列的传感性能有望在低功耗和适度传感器温度下用于监测 LFG 中的气体事件,具有实际应用前景。