Suppr超能文献

用于预测癌症患者胰腺切除术后院内死亡率的简单风险评分。

A simple risk score to predict in-hospital mortality after pancreatic resection for cancer.

机构信息

Department of Surgery, University of Massachusetts Medical School, Worcester, MA, USA.

出版信息

Ann Surg Oncol. 2010 Jul;17(7):1802-7. doi: 10.1245/s10434-010-0947-x. Epub 2010 Feb 13.

Abstract

BACKGROUND

Pancreatectomy for cancer continues to have substantial perioperative risk, and the factors affecting mortality are ill defined. An integer-based risk score based on national data might help clarify the risk of in-hospital mortality in patients undergoing pancreatic resection.

METHODS

Records with the diagnosis of pancreatic cancer were queried from the Nationwide Inpatient Sample for 1998-2006. Procedures were categorized as proximal, distal, or nonspecified pancreatectomies on the basis of ICD-9 codes. Logistic regression and bootstrap methods were used to create an integer risk score for estimating the risk of in-hospital mortality using patient demographics, comorbidities (Charlson comorbidity score), procedure, and hospital type. A random sample of 80% of the cohort was used to create the risk score with a 20% internal validation set.

RESULTS

A total of 5715 patient discharges were identified. Composite in-hospital mortality was 5.8%. Predictors used for the final model were age group, Charlson score, sex, type of pancreatectomy, and hospital volume status (low-, medium-, or high-volume center). Integer values were assigned to these characteristics and then used for calculating an additive score. Three clinically useful score groups were defined to stratify the risk of in-hospital mortality (mortality was 2.0, 6.2, and 13.9%, respectively; P < 0.0001), with a 6.95-fold difference between the low- and high-risk groups. There was sufficient discrimination of both the derivation set and the validation set, with c statistics of 0.71 and 0.72, respectively.

CONCLUSIONS

An integer-based risk score can be used to accurately predict in-hospital mortality after pancreatectomy and may be useful for preoperative risk stratification and patient counseling.

摘要

背景

胰腺癌切除术仍存在大量围手术期风险,影响死亡率的因素尚未明确。基于全国数据的整数风险评分可能有助于阐明接受胰腺切除术患者的院内死亡率风险。

方法

从 1998 年至 2006 年的全国住院患者样本中查询诊断为胰腺癌的记录。根据 ICD-9 代码,将手术分为胰头、胰体尾或未特指的胰腺切除术。使用逻辑回归和自举方法,基于患者人口统计学、合并症(Charlson 合并症评分)、手术和医院类型创建整数风险评分,以估计院内死亡率的风险。使用队列的 80%的随机样本创建风险评分,20%的内部验证集进行验证。

结果

共确定了 5715 例患者出院。复合院内死亡率为 5.8%。最终模型的预测因子包括年龄组、Charlson 评分、性别、胰腺切除术类型和医院容量状态(低、中或高容量中心)。为这些特征分配整数值,然后用于计算加性评分。定义了三个临床有用的评分组来分层院内死亡率的风险(死亡率分别为 2.0%、6.2%和 13.9%;P<0.0001),低风险组和高风险组之间的差异为 6.95 倍。该评分在推导组和验证组中均具有良好的区分度,C 统计量分别为 0.71 和 0.72。

结论

基于整数的风险评分可用于准确预测胰腺切除术后的院内死亡率,并且可能有助于术前风险分层和患者咨询。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验