Suppr超能文献

在光照和暗适应期间,小鼠眼睛中的视觉循环视黄醛、视紫红质磷酸化和光传导之间的关系。

Relationships among visual cycle retinoids, rhodopsin phosphorylation, and phototransduction in mouse eyes during light and dark adaptation.

机构信息

Department of Biochemistry (Box 357350), University of Washington, Seattle, Washington 98195, USA.

出版信息

Biochemistry. 2010 Mar 23;49(11):2454-63. doi: 10.1021/bi1001085.

Abstract

Phosphorylation and regeneration of rhodopsin, the prototypical G-protein-coupled receptor, each can influence light and dark adaptation. To evaluate their relative contributions, we quantified rhodopsin, retinoids, phosphorylation, and photosensitivity in mice during a 90 min illumination followed by dark adaptation. During illumination, all-trans-retinyl esters and, to a lesser extent, all-trans-retinal accumulate and reach the steady state in <1 h. Each major phosphorylation site on rhodopsin reaches a steady state level of phosphorylation at a different time during illumination. The dominant factor that limits dark adaptation is isomerization of retinal. During dark adaptation, dephosphorylation of rhodopsin occurs in two phases. The faster phase corresponds to rapid dephosphorylation of regenerated rhodopsin present at the end of the illumination period. The slower phase corresponds to dephosphorylation of rhodopsin as it forms by regeneration. We conclude that rhodopsin phosphorylation has three physiological functions: it quenches phototransduction, reduces sensitivity during light adaptation, and suppresses bleached rhodopsin activity during dark adaptation.

摘要

视紫红质(rhodopsin)是典型的 G 蛋白偶联受体(G-protein-coupled receptor),其磷酸化和再生都能影响光暗适应。为了评估它们的相对贡献,我们在光照 90 分钟后,对小鼠进行了暗适应,期间定量检测了视紫红质、视黄醛、磷酸化和光敏度。在光照过程中,全反式视黄酯(all-trans-retinyl esters)和全反式视黄醛(all-trans-retinal)会积累,并在不到 1 小时内达到稳定状态。在光照过程中,视紫红质的每个主要磷酸化位点都在不同的时间达到磷酸化的稳定水平。限制暗适应的主要因素是视黄醛的异构化。在暗适应过程中,视紫红质的去磷酸化分两个阶段进行。较快的阶段对应于光照结束时再生的视紫红质的快速去磷酸化。较慢的阶段对应于视紫红质形成时的去磷酸化。我们的结论是,视紫红质的磷酸化有三个生理功能:它能猝灭光转导、减少光适应期间的敏感性,并在暗适应期间抑制漂白的视紫红质的活性。

相似文献

2
Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
J Neurosci. 2016 Jun 29;36(26):6973-87. doi: 10.1523/JNEUROSCI.3544-15.2016.
5
Rhodopsin phosphorylation: from terminating single photon responses to photoreceptor dark adaptation.
Trends Neurosci. 2002 Mar;25(3):124-6. doi: 10.1016/s0166-2236(00)02094-4.
9
Retinoids bound to interstitial retinol-binding protein during light and dark-adaptation.
Vision Res. 1989;29(12):1699-709. doi: 10.1016/0042-6989(89)90152-1.
10
Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice.
J Physiol. 2005 Oct 1;568(Pt 1):83-95. doi: 10.1113/jphysiol.2005.091942. Epub 2005 Jul 1.

引用本文的文献

2
Rapid RGR-dependent visual pigment recycling is mediated by the RPE and specialized Müller glia.
Cell Rep. 2023 Aug 29;42(8):112982. doi: 10.1016/j.celrep.2023.112982. Epub 2023 Aug 15.
4
The novel visual cycle inhibitor (±)-RPE65-61 protects retinal photoreceptors from light-induced degeneration.
PLoS One. 2022 Oct 13;17(10):e0269437. doi: 10.1371/journal.pone.0269437. eCollection 2022.
5
Randomised study evaluating the pharmacodynamics of emixustat hydrochloride in subjects with macular atrophy secondary to Stargardt disease.
Br J Ophthalmol. 2022 Mar;106(3):403-408. doi: 10.1136/bjophthalmol-2020-317712. Epub 2020 Nov 19.
7
Rhodopsin-mediated light-off-induced protein kinase A activation in mouse rod photoreceptor cells.
Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26996-27003. doi: 10.1073/pnas.2009164117. Epub 2020 Oct 12.
8
Shedding new light on the generation of the visual chromophore.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19629-19638. doi: 10.1073/pnas.2008211117. Epub 2020 Aug 5.
10
Photic generation of 11--retinal in bovine retinal pigment epithelium.
J Biol Chem. 2019 Dec 13;294(50):19137-19154. doi: 10.1074/jbc.RA119.011169. Epub 2019 Nov 6.

本文引用的文献

2
Regulation of arrestin binding by rhodopsin phosphorylation level.
J Biol Chem. 2007 Nov 2;282(44):32075-83. doi: 10.1074/jbc.M706057200. Epub 2007 Sep 11.
3
Light-driven translocation of signaling proteins in vertebrate photoreceptors.
Trends Cell Biol. 2006 Nov;16(11):560-8. doi: 10.1016/j.tcb.2006.09.001. Epub 2006 Sep 22.
4
Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents.
Annu Rev Pharmacol Toxicol. 2007;47:469-512. doi: 10.1146/annurev.pharmtox.47.120505.105225.
5
The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light.
J Biol Chem. 2005 Aug 19;280(33):29874-84. doi: 10.1074/jbc.M503603200. Epub 2005 Jun 16.
8
Dark adaptation and the retinoid cycle of vision.
Prog Retin Eye Res. 2004 May;23(3):307-80. doi: 10.1016/j.preteyeres.2004.03.001.
9
Chemistry of visual adaptation in the rat.
Nature. 1960 Oct 8;188:114-8. doi: 10.1038/188114a0.
10
Rhodopsin phosphorylation: 30 years later.
Prog Retin Eye Res. 2003 Jul;22(4):417-34. doi: 10.1016/s1350-9462(03)00017-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验