Division of Plant Sciences, University of Dundee at SCRI, Invergowrie, DUNDEE 5DA, UK.
BMC Evol Biol. 2010 Feb 15;10:44. doi: 10.1186/1471-2148-10-44.
The genetic diversity of crop species is the result of natural selection on the wild progenitor and human intervention by ancient and modern farmers and breeders. The genomes of modern cultivars, old cultivated landraces, ecotypes and wild relatives reflect the effects of these forces and provide insights into germplasm structural diversity, the geographical dimension to species diversity and the process of domestication of wild organisms. This issue is also of great practical importance for crop improvement because wild germplasm represents a rich potential source of useful under-exploited alleles or allele combinations. The aim of the present study was to analyse a major Pisum germplasm collection to gain a broad understanding of the diversity and evolution of Pisum and provide a new rational framework for designing germplasm core collections of the genus.
3020 Pisum germplasm samples from the John Innes Pisum germplasm collection were genotyped for 45 retrotransposon based insertion polymorphism (RBIP) markers by the Tagged Array Marker (TAM) method. The data set was stored in a purpose-built Germinate relational database and analysed by both principal coordinate analysis and a nested application of the Structure program which yielded substantially similar but complementary views of the diversity of the genus Pisum. Structure revealed three Groups (1-3) corresponding approximately to landrace, cultivar and wild Pisum respectively, which were resolved by nested Structure analysis into 14 Sub-Groups, many of which correlate with taxonomic sub-divisions of Pisum, domestication related phenotypic traits and/or restricted geographical locations. Genetic distances calculated between these Sub-Groups are broadly supported by principal coordinate analysis and these, together with the trait and geographical data, were used to infer a detailed model for the domestication of Pisum.
These data provide a clear picture of the major distinct gene pools into which the genus Pisum is partitioned and their geographical distribution. The data strongly support the model of independent domestications for P. sativum ssp abyssinicum and P. sativum. The relationships between these two cultivated germplasms and the various sub-divisions of wild Pisum have been clarified and the most likely ancestral wild gene pools for domesticated P. sativum identified. Lastly, this study provides a framework for defining global Pisum germplasm which will be useful for designing core collections.
作物物种的遗传多样性是野生祖先自然选择和古代及现代农民和培育者人为干预的结果。现代品种、古老的栽培地方品种、生态型和野生近缘种的基因组反映了这些力量的影响,为研究种质结构多样性、物种多样性的地理维度以及野生生物的驯化过程提供了线索。这一问题对于作物改良也具有重要的实际意义,因为野生种质代表了丰富的潜在有用基因来源,这些基因可能尚未得到充分利用。本研究的目的是分析主要的豌豆种质资源,以广泛了解豌豆的多样性和进化,并为该属的种质核心收集提供新的合理框架。
使用标记数组标记(TAM)方法,对来自约翰英纳斯豌豆种质资源库的 3020 个豌豆种质样本进行了 45 个逆转座子基础插入多态性(RBIP)标记的基因型分析。该数据集存储在一个专门构建的 Germinate 关系数据库中,并通过主坐标分析和嵌套应用结构程序进行分析,这两种方法提供了豌豆属多样性的实质性相似但互补的视图。结构揭示了三个组(1-3),大致对应于地方品种、品种和野生豌豆,通过嵌套结构分析进一步分为 14 个亚组,其中许多与豌豆的分类学细分、与驯化相关的表型特征和/或受限制的地理位置相关。这些亚组之间计算的遗传距离得到了主坐标分析的广泛支持,这些距离以及性状和地理数据被用于推断豌豆驯化的详细模型。
这些数据提供了一个清晰的画面,展示了豌豆属分为哪些主要的不同基因库及其地理分布。这些数据强烈支持 P. sativum ssp abyssinicum 和 P. sativum 独立驯化的模型。这两个栽培种质与野生豌豆各分支之间的关系已经得到澄清,并确定了驯化 P. sativum 最可能的原始野生基因库。最后,本研究为定义全球豌豆种质提供了一个框架,这对于设计核心收集将是有用的。