Suppr超能文献

基于带血浆输入函数的两室 compartmental 模型的基函数的动力学建模:一般原理及其在 [18F] 氟脱氧葡萄糖正电子发射断层扫描中的应用。

Kinetic modelling using basis functions derived from two-tissue compartmental models with a plasma input function: general principle and application to [18F]fluorodeoxyglucose positron emission tomography.

机构信息

Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.

出版信息

Neuroimage. 2010 May 15;51(1):164-72. doi: 10.1016/j.neuroimage.2010.02.013. Epub 2010 Feb 13.

Abstract

A kinetic modelling method for the determination of influx constant, Ki is given that utilises basis functions derived from plasma input two-tissue compartmental models (BAFPIC). Two forms of the basis functions are given: BAFPICI with k4=0 (no product loss) and BAFPICR with k4 non-zero. Simulations were performed using literature rate constant values for [18F]fluorodeoxyglucose (FDG) in both normal and abnormal brain pathology. Both homogeneous and heterogeneous tissues were simulated and this data was also used as input for other methods commonly used to determine Ki: non-linear least squares compartmental modelling (NLLS), autoradiographic method and Patlak-Gjedde graphical analysis (PGA). The four methods were also compared for real FDG positron emission tomography (PET) data. For both k4=0 and k4 non-zero simulated data BAFPIC had the best bias properties of the four methods. The autoradiographic method was always the best for variability but BAFPICI had lower variability than PGA and NLLS. For non-zero k4 data, the variance of BAFPICR was inferior to PGA but still significantly superior to NLLS. Ki maps calculated from real data substantiate the simulation results, with BAFPICI having lower noise than PGA. Voxel Ki values from BAFPICI correlated well with those from PGA (r2=0.989). BAFPIC is easy to implement and combines low bias with good noise properties for voxel-wise determination of Ki for FDG. BAFPIC is suitable for determining Ki for other tracers well characterised by a serial two-tissue compartment model and has the advantage of also producing values for individual kinetic constants and blood volume.

摘要

一种用于确定流入常数 Ki 的动态度量建模方法,该方法利用源自血浆输入两组织隔室模型(BAFPIC)的基函数。给出了两种形式的基函数:k4=0 时的 BAFPICI(无产物损失)和 k4 不为零时的 BAFPICR。使用文献中 [18F]氟脱氧葡萄糖(FDG)在正常和异常脑病理学中的速率常数值进行了模拟。模拟了同质和异质组织,并且还将此数据用作其他常用于确定 Ki 的方法的输入:非线性最小二乘隔室建模(NLLS)、放射自显影法和 Patlak-Gjedde 图形分析(PGA)。还将这四种方法用于真实的 FDG 正电子发射断层扫描(PET)数据进行了比较。对于 k4=0 和 k4 不为零的模拟数据,BAFPIC 在这四种方法中具有最佳的偏差特性。放射自显影法在变异性方面总是最好的,但 BAFPIC 的变异性低于 PGA 和 NLLS。对于 k4 不为零的数据,BAFPICR 的方差不如 PGA,但仍明显优于 NLLS。来自真实数据的 Ki 图证实了模拟结果,BAFPIC 的噪声低于 PGA。BAFPIC 的体素 Ki 值与 PGA 的 Ki 值相关性良好(r2=0.989)。BAFPIC 易于实现,并且对于 FDG 的体素水平 Ki 测定具有低偏差和良好的噪声特性。BAFPIC 适用于良好表征为串联两组织隔室模型的其他示踪剂的 Ki 测定,并且具有产生单个动力学常数和血容量值的优点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验