Suppr超能文献

在早老性疾病沃纳综合征中存在缺陷的WRN解旋酶与拓扑异构酶3发生基因相互作用,并恢复了sgs1 top3的top3生长缓慢表型。

WRN helicase defective in the premature aging disorder Werner syndrome genetically interacts with topoisomerase 3 and restores the top3 slow growth phenotype of sgs1 top3.

作者信息

Aggarwal Monika, Brosh Robert M

机构信息

Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH, NIH Biomedical Research Center, 251 Bayview Blvd, Suite 100, Rm #06B125, Baltimore, MD 21224, USA.

出版信息

Aging (Albany NY). 2009 Feb 5;1(2):219-33. doi: 10.18632/aging.100020.

Abstract

Werner syndrome (WS) is a premature aging disorder characterized by genomic instability. The WRN gene defective in WS encodes a protein with both helicase and exonuclease activities that interacts with proteins implicated in DNA metabolism. To understand its genetic functions, we examined the ability of human WRN to rescue phenotypes associated with sgs1, the sole RecQ helicase in Saccharomyces cerevisiae. WRN failed to rescue sgs1 sensitivity to the DNA damaging agent methylmethane sulfonate or replication inhibitor hydroxyurea, suggesting divergent functions of human and yeast RecQ helicases. However, physiological expression of WRN in sgs1 top3 restored top3 slow growth phenotype, whereas no effect on growth was observed with wild-type or sgs1 strains. Slow growth of WRN-transformed sgs1 top3 correlated with an elevated population of large-budded cells with undivided nuclei, indicating restoration of cell cycle delay in late S/G2 characteristic of top3. WRN helicase but not exonuclease activity was genetically required for restoration of top3 growth phenotype, demonstrating separation of function of WRN catalytic activities. A naturally occurring missense polymorphism in WRN that interferes with helicase activity abolished its ability to restore top3 slow growth phenotype. Proposed roles of WRN in genetic pathways important for the suppression of genomic instability are discussed.

摘要

沃纳综合征(WS)是一种以基因组不稳定为特征的早衰疾病。WS中存在缺陷的WRN基因编码一种具有解旋酶和核酸外切酶活性的蛋白质,该蛋白质与参与DNA代谢的蛋白质相互作用。为了解其遗传功能,我们检测了人类WRN拯救与酿酒酵母中唯一的RecQ解旋酶sgs1相关表型的能力。WRN无法拯救sgs1对DNA损伤剂甲磺酸甲酯或复制抑制剂羟基脲的敏感性,这表明人类和酵母RecQ解旋酶的功能存在差异。然而,WRN在sgs1 top3中的生理表达恢复了top3生长缓慢的表型,而野生型或sgs1菌株的生长未受影响。WRN转化的sgs1 top3生长缓慢与具有未分裂细胞核的大芽细胞群体增加相关,表明恢复了top3特有的S/G2晚期细胞周期延迟。恢复top3生长表型在遗传上需要WRN解旋酶活性而非核酸外切酶活性,这证明了WRN催化活性的功能分离。WRN中一种干扰解旋酶活性的自然发生的错义多态性消除了其恢复top3生长缓慢表型的能力。我们还讨论了WRN在抑制基因组不稳定的重要遗传途径中的拟议作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a59/2806000/7acf0217c6e1/aging-01-219-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验