Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, 48149 Muenster, Germany.
Langmuir. 2010 May 4;26(9):6386-93. doi: 10.1021/la904087s.
Many biosensor applications are based on streptavidin (SA) binding to partially biotinylated self-assembled thiol monolayers (SAMs). In our study, binary SAMs on gold were prepared from solutions containing 16-mercapto-1-hexadecanol (thiol I) and N-(8-biotinyl-3,6-dioxa-octanamidyl)-16-mercaptohexadecanamide (thiol II) in varying component ratios. Either chloroform or ethanol was used as solvent. After 24 h thiol incubation, SA was immobilized on the resulting SAMs using the strong SA-biotin interaction. The SA binding process was monitored by QCM-D (quartz crystal microbalance monitoring dissipation factor). It is shown that the Sauerbrey equation is valid to calculate the mass quantities of the immobilized SA layers. Under the chosen incubation conditions, marginal fractions of the biotinylated component II in chloroform ((n(I)/n(II))(solution) approximately = 1000) lead to SAMs which ensure a maximal SA binding quantity of m(Sauerbrey SA) approximately = 400 ng x cm(-2), being equivalent to a SA single-layer arrangement on the SAM surface. In case of incubations from ethanolic solutions, a complete SA layer formation needs significantly higher amounts of the biotinylated component II during SAM preparation ((n(I)/n(II))(solution) approximately = 50). X-ray photoelectron spectroscopy data show that the fraction of biotinylated thiol II in the SAM determines the amount of surface-bound SA. The SAM thiol ratio ((n(I)/n(II))(SAM)) not only depends on the corresponding component ratio in the incubation solution, but is also strongly influenced by the solvent. Using chloroform as solvent during SAM preparation significantly increased the fraction of biotinylated thiol II in the SAMs compared to ethanol.
许多生物传感器应用都基于链霉亲和素(SA)与部分生物素化的自组装硫醇单层(SAM)的结合。在我们的研究中,金上的二元 SAM 是通过含有 16-巯基-1-十六烷醇(硫醇 I)和 N-(8-生物素基-3,6-二氧杂辛烷酰基)-16-巯基十六酰胺(硫醇 II)的溶液,在不同的组分比中制备而成。使用氯仿或乙醇作为溶剂。24 小时硫醇孵育后,通过 SA 与生物素的强相互作用将 SA 固定在所得的 SAM 上。SA 结合过程通过 QCM-D(石英晶体微天平监测耗散因子)进行监测。结果表明,Sauerbrey 方程可用于计算固定化 SA 层的质量。在所选择的孵育条件下,氯仿中生物素化组分 II 的边缘分数((n(I)/n(II))(solution)≈1000)导致 SAM 确保了最大的 SA 结合量 m(Sauerbrey SA)≈400ng x cm(-2),相当于 SAM 表面上的 SA 单层排列。在乙醇溶液的孵育情况下,在 SAM 制备过程中需要显著更高量的生物素化组分 II 才能形成完整的 SA 层((n(I)/n(II))(solution)≈50)。X 射线光电子能谱数据表明,SAM 中生物素化硫醇 II 的分数决定了表面结合的 SA 的量。SAM 硫醇比((n(I)/n(II))(SAM))不仅取决于孵育溶液中的相应组分比,而且还受到溶剂的强烈影响。在 SAM 制备过程中使用氯仿作为溶剂,与乙醇相比,SAM 中生物素化硫醇 II 的比例显著增加。