Suppr超能文献

使用高时间分辨率原子力显微镜在单分子水平检测链霉亲和素-生物素中间亚稳态

Detection of streptavidin-biotin intermediate metastable states at the single-molecule level using high temporal-resolution atomic force microscopy.

作者信息

Mondarte Evan Angelo, Maekawa Tatsuhiro, Nyu Takashi, Tahara Hiroyuki, Lkhamsuren Ganchimeg, Hayashi Tomohiro

机构信息

Tokyo Institute of Technology, Department of Materials Science and Engineering, School of Materials and Chemical Technology 4259 Nagatsuta-cho, Midori-ku Yokohama Kanagawa 226-8503 Japan

JST-PRESTO 4-1-8 Hon-cho Kawaguchi Saitama 332-0012 Japan.

出版信息

RSC Adv. 2019 Jul 23;9(39):22705-22712. doi: 10.1039/c9ra04106k. eCollection 2019 Jul 17.

Abstract

Although the streptavidin-biotin intermolecular bond has been extensively used in many applications due to its high binding affinity, its exact nature and interaction mechanism have not been well understood. Several reports from previous studies gave a wide range of results in terms of the system's energy potential landscape because of bypassing some short-lived states in the detection process. We employed a quasi-static process of slowly loading force onto the bond (loading rate = 20 pN s) to minimize the force-induced disruption and to provide a chance to explore the system in near-equilibrium. Therein, by utilizing a fast sampling rate for the detection of force by atomic force microscopy (20 μs per data point), several transient states of the system were clearly resolved in our force spectroscopy measurements. These key strategies allow the determination of the states' relative positions and free energy levels along the pulling reaction coordinate for the illustration of an energy landscape of the system.

摘要

尽管链霉亲和素-生物素分子间键由于其高结合亲和力而在许多应用中得到广泛使用,但其确切性质和相互作用机制尚未得到很好的理解。由于在检测过程中绕过了一些短寿命状态,先前研究的几份报告在系统的能量势景观方面给出了广泛的结果。我们采用了一种准静态过程,即缓慢地对键施加力(加载速率 = 20 pN/s),以最小化力诱导的破坏,并提供一个在接近平衡状态下探索系统的机会。其中,通过利用原子力显微镜检测力的快速采样率(每个数据点20 μs),在我们的力谱测量中清晰地分辨出了系统的几个瞬态状态。这些关键策略能够确定沿着拉动反应坐标的状态的相对位置和自由能级,以阐明系统的能量景观。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53be/9067134/3c23668b9426/c9ra04106k-f1.jpg

相似文献

2
Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry.
PLoS One. 2017 Dec 5;12(12):e0188722. doi: 10.1371/journal.pone.0188722. eCollection 2017.
3
Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy.
Biochemistry. 2000 Aug 22;39(33):10219-23. doi: 10.1021/bi992715o.
4
Energy landscape roughness of the streptavidin-biotin interaction.
J Mol Recognit. 2007 Nov-Dec;20(6):495-501. doi: 10.1002/jmr.841.
6
Switchable reinforced streptavidin.
Nanoscale. 2020 Mar 28;12(12):6803-6809. doi: 10.1039/d0nr00265h. Epub 2020 Mar 17.
7
Direct force measurements of the streptavidin-biotin interaction.
Biomol Eng. 1999 Dec 31;16(1-4):45-55. doi: 10.1016/s1050-3862(99)00035-2.
8
Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6594-6601. doi: 10.1073/pnas.1816909116. Epub 2019 Mar 19.
10
Streptavidin/biotin: Tethering geometry defines unbinding mechanics.
Sci Adv. 2020 Mar 25;6(13):eaay5999. doi: 10.1126/sciadv.aay5999. eCollection 2020 Mar.

引用本文的文献

2
Quantifying molecular- to cellular-level forces in living cells.
J Phys D Appl Phys. 2021 Dec 2;54(48). doi: 10.1088/1361-6463/ac2170. Epub 2021 Sep 9.

本文引用的文献

1
Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6594-6601. doi: 10.1073/pnas.1816909116. Epub 2019 Mar 19.
2
Correlating single-molecule and ensemble-average measurements of peptide adsorption onto different inorganic materials.
Phys Chem Chem Phys. 2016 Jun 7;18(21):14454-9. doi: 10.1039/c6cp01168c. Epub 2016 May 13.
3
Quantitative Evaluation of Peptide-Material Interactions by a Force Mapping Method: Guidelines for Surface Modification.
Langmuir. 2015 Jul 28;31(29):8006-12. doi: 10.1021/acs.langmuir.5b01691. Epub 2015 Jul 14.
4
Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance.
Biochim Biophys Acta. 2015 May;1848(5):1224-33. doi: 10.1016/j.bbamem.2015.02.014. Epub 2015 Feb 25.
6
Force measurement enabling precise analysis by dynamic force spectroscopy.
Int J Mol Sci. 2012;13(1):453-65. doi: 10.3390/ijms13010453. Epub 2011 Dec 29.
7
Absolute free energy of binding of avidin/biotin, revisited.
J Phys Chem B. 2012 Jun 14;116(23):6628-36. doi: 10.1021/jp212276m. Epub 2012 Feb 27.
8
Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment.
Curr Opin Chem Biol. 2011 Oct;15(5):710-8. doi: 10.1016/j.cbpa.2011.07.020. Epub 2011 Aug 19.
9
Nanoscale chemical composition analysis using peptides targeting inorganic materials.
Langmuir. 2011 Mar 15;27(6):2478-83. doi: 10.1021/la104178h. Epub 2011 Feb 1.
10
Hidden variety of biotin-streptavidin/avidin local interactions revealed by site-selective dynamic force spectroscopy.
Phys Chem Chem Phys. 2010 Oct 21;12(39):12578-83. doi: 10.1039/c0cp00259c. Epub 2010 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验