Suppr超能文献

肺炎链球菌的三种表面外糖苷酶,NanA、BgaA 和 StrH,促进了对人中性粒细胞吞噬杀伤作用的抵抗。

Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils.

机构信息

Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Infect Immun. 2010 May;78(5):2108-16. doi: 10.1128/IAI.01125-09. Epub 2010 Feb 16.

Abstract

Streptococcus pneumoniae (the pneumococcus) is a major human pathogen and a leading cause of inflammatory infections such as pneumonia and otitis media. An important mechanism for host defense against S. pneumoniae is opsonophagocytic killing by neutrophils. To persist in the human host, the pneumococcus has developed strategies to evade opsonization and subsequent neutrophil-mediated killing. Utilizing a genomic approach, we identified NanA, the major pneumococcal neuraminidase, as a factor important for resistance to opsonophagocytic killing in ex vivo killing assays using human neutrophils. The effect of NanA was shown using both type 4 (TIGR4) and type 6A clinical isolates. NanA promotes this resistance by acting in conjunction with two other surface-associated exoglycosidases, BgaA, a beta-galactosidase, and StrH, an N-acetylglucosaminidase. Experiments using human serum showed that these exoglycosidases reduced deposition of complement component C3 on the pneumococcal surface, providing a mechanism for this resistance. Additionally, we have shown that antibodies in human serum do not contribute to this phenotype. These results demonstrate that deglycosylation of a human serum glycoconjugate(s) by the combined effects of NanA, BgaA, and StrH, is important for resistance to complement deposition and subsequent phagocytic killing of S. pneumoniae.

摘要

肺炎链球菌(肺炎球菌)是一种主要的人类病原体,也是引起肺炎和中耳炎等炎症性感染的主要原因。宿主防御肺炎链球菌的一个重要机制是中性粒细胞的调理吞噬杀伤作用。为了在人类宿主中持续存在,肺炎球菌已经发展出逃避调理作用和随后的中性粒细胞介导的杀伤作用的策略。我们利用基因组方法,确定了主要的肺炎球菌神经氨酸酶 NanA 是在使用人中性粒细胞进行的体外杀伤实验中对调理吞噬杀伤具有重要抗性的因素。使用 4 型(TIGR4)和 6A 型临床分离株都证明了 NanA 的作用。NanA 通过与另外两种表面相关的外糖苷酶 BgaA(β-半乳糖苷酶)和 StrH(N-乙酰氨基葡萄糖苷酶)协同作用,促进这种抗性。使用人血清进行的实验表明,这些外糖苷酶减少了补体成分 C3 在肺炎球菌表面的沉积,为这种抗性提供了一种机制。此外,我们已经表明人血清中的抗体与此表型无关。这些结果表明,NanA、BgaA 和 StrH 的联合作用使人类血清糖缀合物的糖基化减少,这对于抵抗补体沉积和随后肺炎链球菌的吞噬杀伤作用很重要。

相似文献

4
Unravelling the multiple functions of the architecturally intricate Streptococcus pneumoniae β-galactosidase, BgaA.
PLoS Pathog. 2014 Sep 11;10(9):e1004364. doi: 10.1371/journal.ppat.1004364. eCollection 2014 Sep.
5
Testing Anti-Pneumococcal Antibody Function Using Bacteria and Primary Neutrophils.
Methods Mol Biol. 2021;2183:559-574. doi: 10.1007/978-1-0716-0795-4_33.
7
Pneumococcal BgaA Promotes Host Organ Bleeding and Coagulation in a Mouse Sepsis Model.
Front Cell Infect Microbiol. 2022 Jul 1;12:844000. doi: 10.3389/fcimb.2022.844000. eCollection 2022.
9
Aging reduces the functionality of anti-pneumococcal antibodies and the killing of Streptococcus pneumoniae by neutrophil phagocytosis.
Vaccine. 2011 Feb 24;29(10):1929-34. doi: 10.1016/j.vaccine.2010.12.121. Epub 2011 Jan 12.

引用本文的文献

1
Establishment of an experimental system to analyse extracellular vesicles during apoplastic fungal pathogenesis.
J Extracell Biol. 2025 Feb 17;4(2):e70029. doi: 10.1002/jex2.70029. eCollection 2025 Feb.
2
Determinants of bacterial survival and proliferation in blood.
FEMS Microbiol Rev. 2024 May 8;48(3). doi: 10.1093/femsre/fuae013.
4
Role of extracellular glycosidases in immune evasion.
Front Cell Infect Microbiol. 2023 Feb 3;13:1109449. doi: 10.3389/fcimb.2023.1109449. eCollection 2023.
5
Combining the In Silico and In Vitro Assays to Identify Kuntze Bioactives against Penicillin-Resistant .
Pharmaceuticals (Basel). 2023 Jan 10;16(1):105. doi: 10.3390/ph16010105.
6
interactions with the complement system.
Front Cell Infect Microbiol. 2022 Jul 28;12:929483. doi: 10.3389/fcimb.2022.929483. eCollection 2022.
7
Pneumococcal BgaA Promotes Host Organ Bleeding and Coagulation in a Mouse Sepsis Model.
Front Cell Infect Microbiol. 2022 Jul 1;12:844000. doi: 10.3389/fcimb.2022.844000. eCollection 2022.
8
The Age-Driven Decline in Neutrophil Function Contributes to the Reduced Efficacy of the Pneumococcal Conjugate Vaccine in Old Hosts.
Front Cell Infect Microbiol. 2022 Mar 23;12:849224. doi: 10.3389/fcimb.2022.849224. eCollection 2022.
9
Diverse Mechanisms of Protective Anti-Pneumococcal Antibodies.
Front Cell Infect Microbiol. 2022 Jan 28;12:824788. doi: 10.3389/fcimb.2022.824788. eCollection 2022.
10
The exploitation of human glycans by Group A Streptococcus.
FEMS Microbiol Rev. 2022 May 6;46(3). doi: 10.1093/femsre/fuac001.

本文引用的文献

1
Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates.
Lancet. 2009 Sep 12;374(9693):893-902. doi: 10.1016/S0140-6736(09)61204-6.
2
The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion.
J Exp Med. 2009 Aug 31;206(9):1845-52. doi: 10.1084/jem.20090386. Epub 2009 Aug 17.
3
Human neutrophils kill Streptococcus pneumoniae via serine proteases.
J Immunol. 2009 Aug 15;183(4):2602-9. doi: 10.4049/jimmunol.0900688. Epub 2009 Jul 20.
4
The NanA neuraminidase of Streptococcus pneumoniae is involved in biofilm formation.
Infect Immun. 2009 Sep;77(9):3722-30. doi: 10.1128/IAI.00228-09. Epub 2009 Jun 29.
5
Pneumococcal capsular polysaccharide structure predicts serotype prevalence.
PLoS Pathog. 2009 Jun;5(6):e1000476. doi: 10.1371/journal.ppat.1000476. Epub 2009 Jun 12.
6
Natural antibody to conserved targets of Haemophilus influenzae limits colonization of the murine nasopharynx.
Infect Immun. 2009 Aug;77(8):3458-65. doi: 10.1128/IAI.01564-08. Epub 2009 May 18.
7
Resistance to mucosal lysozyme compensates for the fitness deficit of peptidoglycan modifications by Streptococcus pneumoniae.
PLoS Pathog. 2008 Dec;4(12):e1000241. doi: 10.1371/journal.ppat.1000241. Epub 2008 Dec 12.
8
Species-specific interaction of Streptococcus pneumoniae with human complement factor H.
J Immunol. 2008 Nov 15;181(10):7138-46. doi: 10.4049/jimmunol.181.10.7138.
10
Complement: an efficient sword of innate immunity.
Contrib Microbiol. 2008;15:78-100. doi: 10.1159/000136316.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验