Suppr超能文献

水星BLAST中无间隙延伸的加速

Acceleration of Ungapped Extension in Mercury BLAST.

作者信息

Lancaster Joseph, Buhler Jeremy, Chamberlain Roger D

机构信息

Department of Computer Science and Engineering, Washington University in St. Louis, E-mail:

出版信息

Microprocess Microsyst. 2009 Jun 1;33(4):281-289. doi: 10.1016/j.micpro.2009.02.007.

Abstract

The amount of biosequence data being produced each year is growing exponentially. Extracting useful information from this massive amount of data efficiently is becoming an increasingly difficult task. There are many available software tools that molecular biologists use for comparing genomic data. This paper focuses on accelerating the most widely used such tool, BLAST. Mercury BLAST takes a streaming approach to the BLAST computation by off loading the performance-critical sections to specialized hardware. This hardware is then used in combination with the processor of the host system to deliver BLAST results in a fraction of the time of the general-purpose processor alone.This paper presents the design of the ungapped extension stage of Mercury BLAST. The architecture of the ungapped extension stage is described along with the context of this stage within the Mercury BLAST system. The design is compact and runs at 100 MHz on available FPGAs, making it an effective and powerful component for accelerating biosequence comparisons. The performance of this stage is 25× that of the standard software distribution, yielding close to 50× performance improvement on the complete BLAST application. The sensitivity is essentially equivalent to that of the standard distribution.

摘要

每年产生的生物序列数据量正呈指数级增长。从如此海量的数据中高效提取有用信息正变得越来越困难。分子生物学家有许多可用于比较基因组数据的软件工具。本文着重于加速此类最广泛使用的工具——BLAST。Mercury BLAST通过将性能关键部分卸载到专用硬件上,采用流式方法进行BLAST计算。然后,该硬件与主机系统的处理器结合使用,从而能在仅使用通用处理器所需时间的一小部分内得出BLAST结果。本文介绍了Mercury BLAST的无间隙延伸阶段的设计。描述了无间隙延伸阶段的架构以及该阶段在Mercury BLAST系统中的背景情况。该设计紧凑,在现有的现场可编程门阵列(FPGA)上以100兆赫兹运行,使其成为加速生物序列比较的有效且强大的组件。该阶段的性能是标准软件版本的25倍,在完整的BLAST应用程序上实现了近50倍的性能提升。其灵敏度与标准版本基本相当。

相似文献

1
Acceleration of Ungapped Extension in Mercury BLAST.
Microprocess Microsyst. 2009 Jun 1;33(4):281-289. doi: 10.1016/j.micpro.2009.02.007.
2
Biosequence Similarity Search on the Mercury System.
J VLSI Signal Process Syst Signal Image Video Technol. 2007;49(1):101-121. doi: 10.1007/s11265-007-0087-0.
3
An efficient algorithm after ungapped analysis in BLAST.
DNA Seq. 2006 Aug;17(4):247-53. doi: 10.1080/10425170600805128.
4
Single Pass Streaming BLAST on FPGAs.
Parallel Comput. 2007 Nov;33(10-11):741-756. doi: 10.1016/j.parco.2007.09.003.
5
Mercury BLASTP: Accelerating Protein Sequence Alignment.
ACM Trans Reconfigurable Technol Syst. 2008 Jun;1(2):9. doi: 10.1145/1371579.1371581.
6
BLASTP-ACC: Parallel Architecture and Hardware Accelerator Design for BLAST-Based Protein Sequence Alignment.
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1771-1782. doi: 10.1109/TBCAS.2019.2943539. Epub 2019 Oct 2.
7
Profiling the BLAST bioinformatics application for load balancing on high-performance computing clusters.
BMC Bioinformatics. 2022 Dec 16;23(1):544. doi: 10.1186/s12859-022-05029-7.
8
SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters.
BMC Bioinformatics. 2004 Oct 28;5:171. doi: 10.1186/1471-2105-5-171.
9
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402. doi: 10.1093/nar/25.17.3389.
10
Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction.
BMC Bioinformatics. 2012 Jun 18;13:134. doi: 10.1186/1471-2105-13-134.

引用本文的文献

1
A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.
Bioinformation. 2010 Nov 1;5(5):186-90. doi: 10.6026/97320630005186.
2
Mercury BLASTP: Accelerating Protein Sequence Alignment.
ACM Trans Reconfigurable Technol Syst. 2008 Jun;1(2):9. doi: 10.1145/1371579.1371581.
3
Biosequence Similarity Search on the Mercury System.
J VLSI Signal Process Syst Signal Image Video Technol. 2007;49(1):101-121. doi: 10.1007/s11265-007-0087-0.

本文引用的文献

1
Patternhunter II: highly sensitive and fast homology search.
J Bioinform Comput Biol. 2004 Sep;2(3):417-39. doi: 10.1142/s0219720004000661.
2
Initial sequencing and comparative analysis of the mouse genome.
Nature. 2002 Dec 5;420(6915):520-62. doi: 10.1038/nature01262.
3
BLAT--the BLAST-like alignment tool.
Genome Res. 2002 Apr;12(4):656-64. doi: 10.1101/gr.229202.
4
High speed homology search with FPGAs.
Pac Symp Biocomput. 2002:271-82.
5
SSAHA: a fast search method for large DNA databases.
Genome Res. 2001 Oct;11(10):1725-9. doi: 10.1101/gr.194201.
6
Initial sequencing and analysis of the human genome.
Nature. 2001 Feb 15;409(6822):860-921. doi: 10.1038/35057062.
7
A greedy algorithm for aligning DNA sequences.
J Comput Biol. 2000 Feb-Apr;7(1-2):203-14. doi: 10.1089/10665270050081478.
8
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402. doi: 10.1093/nar/25.17.3389.
9
Local alignment statistics.
Methods Enzymol. 1996;266:460-80. doi: 10.1016/s0076-6879(96)66029-7.
10
Identification of common molecular subsequences.
J Mol Biol. 1981 Mar 25;147(1):195-7. doi: 10.1016/0022-2836(81)90087-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验