Goovaerts P
BioMedware, 516 North State Street, Ann Arbor, MI 48104, USA. email:
Comput Geosci. 2009 Jun;35(6):1255-1270. doi: 10.1016/j.cageo.2008.08.014.
Indicator kriging provides a flexible interpolation approach that is well suited for datasets where: 1) many observations are below the detection limit, 2) the histogram is strongly skewed, or 3) specific classes of attribute values are better connected in space than others (e.g. low pollutant concentrations). To apply indicator kriging at its full potential requires, however, the tedious inference and modeling of multiple indicator semivariograms, as well as the post-processing of the results to retrieve attribute estimates and associated measures of uncertainty. This paper presents a computer code that performs automatically the following tasks: selection of thresholds for binary coding of continuous data, computation and modeling of indicator semivariograms, modeling of probability distributions at unmonitored locations (regular or irregular grids), and estimation of the mean and variance of these distributions. The program also offers tools for quantifying the goodness of the model of uncertainty within a cross-validation and jack-knife frameworks. The different functionalities are illustrated using heavy metal concentrations from the well-known soil Jura dataset. A sensitivity analysis demonstrates the benefit of using more thresholds when indicator kriging is implemented with a linear interpolation model, in particular for variables with positively skewed histograms.
指示克里格法提供了一种灵活的插值方法,非常适合以下数据集:1)许多观测值低于检测限;2)直方图严重偏态;3)特定类别的属性值在空间上比其他值连接性更好(例如低污染物浓度)。然而,要充分发挥指示克里格法的潜力,需要对多个指示半方差图进行繁琐的推断和建模,以及对结果进行后处理以获取属性估计值和相关的不确定性度量。本文介绍了一个计算机代码,它能自动执行以下任务:为连续数据的二进制编码选择阈值、计算和建模指示半方差图、对未监测位置(规则或不规则网格)的概率分布进行建模,以及估计这些分布的均值和方差。该程序还提供了在交叉验证和留一法框架内量化不确定性模型优度的工具。使用著名的汝拉土壤数据集的重金属浓度说明了不同的功能。敏感性分析表明,当使用线性插值模型实施指示克里格法时,使用更多阈值是有益的,特别是对于直方图呈正偏态的变量。