Suppr超能文献

地统计插值中面状数据与点状数据的结合:在土壤科学和医学地理学中的应用

Combining Areal and Point Data in Geostatistical Interpolation: Applications to Soil Science and Medical Geography.

作者信息

Goovaerts Pierre

机构信息

Biomedware, Inc., 3526 W Liberty, Suite 100, Ann Arbor, MI 48103, USA.

出版信息

Math Geosci. 2010 Jul 1;42(5):535-554. doi: 10.1007/s11004-010-9286-5.

Abstract

A common issue in spatial interpolation is the combination of data measured over different spatial supports. For example, information available for mapping disease risk typically includes point data (e.g. patients' and controls' residence) and aggregated data (e.g. socio-demographic and economic attributes recorded at the census track level). Similarly, soil measurements at discrete locations in the field are often supplemented with choropleth maps (e.g. soil or geological maps) that model the spatial distribution of soil attributes as the juxtaposition of polygons (areas) with constant values. This paper presents a general formulation of kriging that allows the combination of both point and areal data through the use of area-to-area, area-to-point, and point-to-point covariances in the kriging system. The procedure is illustrated using two data sets: (1) geological map and heavy metal concentrations recorded in the topsoil of the Swiss Jura, and (2) incidence rates of late-stage breast cancer diagnosis per census tract and location of patient residences for three counties in Michigan. In the second case, the kriging system includes an error variance term derived according to the binomial distribution to account for varying degree of reliability of incidence rates depending on the total number of cases recorded in those tracts. Except under the binomial kriging framework, area-and-point (AAP) kriging ensures the coherence of the prediction so that the average of interpolated values within each mapping unit is equal to the original areal datum. The relationships between binomial kriging, Poisson kriging, and indicator kriging are discussed under different scenarios for the population size and spatial support. Sensitivity analysis demonstrates the smaller smoothing and greater prediction accuracy of the new procedure over ordinary and traditional residual kriging based on the assumption that the local mean is constant within each mapping unit.

摘要

空间插值中的一个常见问题是不同空间支持下测量数据的合并。例如,用于绘制疾病风险图的可用信息通常包括点数据(如患者和对照的居住地)和汇总数据(如在人口普查区层面记录的社会人口和经济属性)。同样,田间离散位置的土壤测量数据通常会辅以分级统计图(如土壤或地质图),这些图将土壤属性的空间分布建模为具有恒定值的多边形(区域)的并置。本文提出了一种克里金法的通用公式,该公式通过在克里金系统中使用区域到区域、区域到点和点到点的协方差,允许合并点数据和面数据。使用两个数据集对该过程进行了说明:(1)瑞士汝拉州表土中的地质图和重金属浓度,以及(2)密歇根州三个县每个普查区晚期乳腺癌诊断的发病率和患者居住地位置。在第二个案例中,克里金系统包括一个根据二项分布导出的误差方差项,以考虑发病率的可靠性程度因这些区域记录的病例总数而异。除了在二项式克里金框架下,区域和点(AAP)克里金可确保预测的一致性,从而使每个制图单元内插值的平均值等于原始面数据。在人口规模和空间支持的不同场景下,讨论了二项式克里金、泊松克里金和指示克里金之间的关系。敏感性分析表明,基于每个制图单元内局部均值恒定的假设,新方法比普通和传统残差克里金具有更小的平滑度和更高的预测精度。

相似文献

5
How does Poisson kriging compare to the popular BYM model for mapping disease risks?
Int J Health Geogr. 2008 Feb 4;7:6. doi: 10.1186/1476-072X-7-6.
6
Combining area-based and individual-level data in the geostatistical mapping of late-stage cancer incidence.
Spat Spatiotemporal Epidemiol. 2009 Oct-Dec;1(1):61-71. doi: 10.1016/j.sste.2009.07.001.
7
Exploratory disease mapping: kriging the spatial risk function from regional count data.
Int J Health Geogr. 2004 Aug 26;3(1):18. doi: 10.1186/1476-072X-3-18.
10
Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions.
Sci Total Environ. 2017 Oct 1;595:400-412. doi: 10.1016/j.scitotenv.2017.03.291. Epub 2017 Apr 6.

引用本文的文献

1
The Effect of Exposure to Neighborhood Violence on Glucocorticoid Receptor Signaling in Lung Tumors.
Cancer Res Commun. 2024 Jul 1;4(7):1643-1654. doi: 10.1158/2767-9764.CRC-24-0032.
2
Identifying the Environmental Determinants of Lung Cancer: A Case Study of Henan, China.
Geohealth. 2023 Jun 1;7(6):e2023GH000794. doi: 10.1029/2023GH000794. eCollection 2023 Jun.
3
Trend and change-point detection analyses of rainfall and temperature over the Awash River basin of Ethiopia.
Heliyon. 2021 Sep 20;7(9):e08024. doi: 10.1016/j.heliyon.2021.e08024. eCollection 2021 Sep.
4
From Natural Resources Evaluation to Spatial Epidemiology: 25 Years in the Making.
Math Geosci. 2021 Feb;53(2):239-266. doi: 10.1007/s11004-020-09886-x. Epub 2020 Aug 28.
5
Spatiotemporal Imputation of MAIAC AOD Using Deep Learning with Downscaling.
Remote Sens Environ. 2020 Feb;237. doi: 10.1016/j.rse.2019.111584. Epub 2019 Dec 10.
7
Integrative Spatial Data Analytics for Public Health Studies of New York State.
AMIA Annu Symp Proc. 2017 Feb 10;2016:391-400. eCollection 2016.

本文引用的文献

2
Applying Geostatistical Analysis to Crime Data: Car-Related Thefts in the Baltic States.
Geogr Anal. 2010 Jan;42(1):53-77. doi: 10.1111/j.1538-4632.2010.00782.x.
3
Combining area-based and individual-level data in the geostatistical mapping of late-stage cancer incidence.
Spat Spatiotemporal Epidemiol. 2009 Oct-Dec;1(1):61-71. doi: 10.1016/j.sste.2009.07.001.
4
Medical Geography: a Promising Field of Application for Geostatistics.
Math Geol. 2009;41:243-264. doi: 10.1007/s11004-008-9211-3.
7
A comparison of Bayesian spatial models for disease mapping.
Stat Methods Med Res. 2005 Feb;14(1):35-59. doi: 10.1191/0962280205sm388oa.
8
The importance of place of residence in predicting late-stage diagnosis of breast or cervical cancer.
Health Place. 2005 Mar;11(1):15-29. doi: 10.1016/j.healthplace.2003.12.002.
9
Analyzing geographic patterns of disease incidence: rates of late-stage colorectal cancer in Iowa.
J Med Syst. 2004 Jun;28(3):223-36. doi: 10.1023/b:joms.0000032841.39701.36.
10
Geostatistical analysis of soil contamination in the Swiss Jura.
Environ Pollut. 1994;86(3):315-27. doi: 10.1016/0269-7491(94)90172-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验