Uchiyama H, Nagasawa K
School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.
J Biol Chem. 1991 Apr 15;266(11):6756-60.
The N----O sulfate transfer of heparin has been investigated as an approach to chemical 3-O-sulfation of the D-glucosamine residues in heparin. The pyridinium salt of porcine heparin was heated at 90 degrees C in solid state for 90 min (in vacuo over P2O5) to effect the transfer of the N-sulfate groups to the HO groups in the polysaccharide, followed by N-resulfation. The product (N----O sulfate-transferred, N-resulfated heparin (ST heparin] was depolymerized with HONO to generate a mixture of di- and higher oligosaccharides. The borohydride-reduced oligosaccharides were separated on Bio-Gel P-4 and DEAE-Sephacel. The disaccharide trisulfate fraction (10.4% yield) was found to be a mixture of nearly equal amounts of IdoA(2-SO4)-AManR(3,6-diSO4) and IdoA(2,3-diSO4)-AManR(6-SO4), where IdoA represents L-iduronic acid and AManR represents the alditol formed by reduction of 2,5-anhydro-D-mannose with NaBH4. Chemical and NMR spectroscopic analyses revealed that the N----O sulfate transfer proceeded preferentially at HO-3 positions in both 6-O-sulfo-D-glucosamine and 2-O-sulfo-L-iduronic acid residues. Chromatography on antithrombin III-Sepharose gel indicated that the structural change involved in ST heparin resulted in an obvious increase in the ability to bind antithrombin III. Biological examination also indicated that this structural change resulted in moderate increases in all the activities (blood anti-clotting, anti-Factor IIa, and anti-Factor Xa) and in the strength of intrinsic fluorescence of antithrombin III.