Suppr超能文献

RNA 分子进化群体中突变的表型效应。

Phenotypic effect of mutations in evolving populations of RNA molecules.

机构信息

Centro de Astrobiología (INTA-CSIC), Madrid, Spain.

出版信息

BMC Evol Biol. 2010 Feb 17;10:46. doi: 10.1186/1471-2148-10-46.

Abstract

BACKGROUND

The secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework.

RESULTS

We investigate the effect of microscopic mutations on the phenotype of RNA molecules during their in silico evolution and adaptation. We calculate the distribution of the effects of mutations on fitness, the relative fractions of beneficial and deleterious mutations and the corresponding selection coefficients for populations evolving under different mutation rates. Three different situations are explored: the mutation-selection equilibrium (optimized population) in three different fitness landscapes, the dynamics during adaptation towards a goal structure (adapting population), and the behavior under periodic population bottlenecks (perturbed population).

CONCLUSIONS

The ratio between the number of beneficial and deleterious mutations experienced by a population of RNA sequences increases with the value of the mutation rate mu at which evolution proceeds. In contrast, the selective value of mutations remains almost constant, independent of mu, indicating that adaptation occurs through an increase in the amount of beneficial mutations, with little variations in the average effect they have on fitness. Statistical analyses of the distribution of fitness effects reveal that small effects, either beneficial or deleterious, are well described by a Pareto distribution. These results are robust under changes in the fitness landscape, remarkably when, in addition to selecting a target secondary structure, specific subsequences or low-energy folds are required. A population perturbed by bottlenecks behaves similarly to an adapting population, struggling to return to the optimized state. Whether it can survive in the long run or whether it goes extinct depends critically on the length of the time interval between bottlenecks.

摘要

背景

折叠 RNA 序列的二级结构是将表型映射到基因型的良好模型,由 RNA 序列表示。对 RNA 分子集合向目标二级结构进化的计算研究为复杂群体适应背后的机制提供了有价值的线索。序列和结构之间的空间关系、RNA 集合在突变-选择平衡时的组织、作为群体参数函数的适应时间、准种中集体效应的存在或促进适应的最佳突变率,所有这些问题都可以在这个框架内探讨。

结果

我们研究了微观突变对 RNA 分子表型的影响,这些 RNA 分子在其计算机进化和适应过程中发生突变。我们计算了突变对适合度的影响的分布、有利突变和有害突变的相对分数以及在不同突变率下进化的群体的相应选择系数。我们探索了三种不同情况:在三个不同的适合度景观中的突变-选择平衡(优化种群)、适应目标结构时的动力学(适应种群)和周期性群体瓶颈下的行为(受扰种群)。

结论

在 RNA 序列种群中经历有利突变和有害突变的数量比随着进化过程中突变率 mu 的增加而增加。相比之下,突变的选择值几乎保持不变,与 mu 无关,这表明适应是通过增加有利突变的数量来实现的,而它们对适合度的平均影响变化不大。对适合度效应分布的统计分析表明,无论是有利还是有害的小效应,都可以很好地用帕累托分布来描述。当改变适合度景观时,这些结果是稳健的,当除了选择目标二级结构外,还需要特定的子序列或低能折叠时,这些结果尤其显著。受瓶颈影响的种群与适应种群的行为相似,努力恢复到优化状态。它能否在长期内生存或灭绝,取决于瓶颈之间的时间间隔的长度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c1e/2841169/b3518848eb78/1471-2148-10-46-1.jpg

相似文献

1
Phenotypic effect of mutations in evolving populations of RNA molecules.
BMC Evol Biol. 2010 Feb 17;10:46. doi: 10.1186/1471-2148-10-46.
2
Collective properties of evolving molecular quasispecies.
BMC Evol Biol. 2007 Jul 9;7:110. doi: 10.1186/1471-2148-7-110.
3
Effect of Population Size and Mutation Rate on the Evolution of RNA Sequences on an Adaptive Landscape Determined by RNA Folding.
Int J Biol Sci. 2017 Sep 5;13(9):1138-1151. doi: 10.7150/ijbs.19436. eCollection 2017.
4
Landscapes: complex optimization problems and biopolymer structures.
Comput Chem. 1994 Sep;18(3):295-324. doi: 10.1016/0097-8485(94)85025-9.
5
Quantifying slow evolutionary dynamics in RNA fitness landscapes.
J Bioinform Comput Biol. 2010 Dec;8(6):1027-40. doi: 10.1142/s0219720010005075.
6
Distributions of beneficial fitness effects in RNA.
Genetics. 2005 Aug;170(4):1449-57. doi: 10.1534/genetics.104.039248. Epub 2005 Jun 8.
7
How Good Are Statistical Models at Approximating Complex Fitness Landscapes?
Mol Biol Evol. 2016 Sep;33(9):2454-68. doi: 10.1093/molbev/msw097. Epub 2016 May 14.
8
Quasispecies on Fitness Landscapes.
Curr Top Microbiol Immunol. 2016;392:61-120. doi: 10.1007/82_2015_469.
9
Visualizing fitness landscapes.
Evolution. 2011 Jun;65(6):1544-58. doi: 10.1111/j.1558-5646.2011.01236.x. Epub 2011 Mar 1.
10
From bad to good: Fitness reversals and the ascent of deleterious mutations.
PLoS Comput Biol. 2006 Oct 20;2(10):e141. doi: 10.1371/journal.pcbi.0020141.

引用本文的文献

1
A Family of Fitness Landscapes Modeled through Gene Regulatory Networks.
Entropy (Basel). 2022 Apr 29;24(5):622. doi: 10.3390/e24050622.
2
Parsimonious Scenario for the Emergence of Viroid-Like Replicons De Novo.
Viruses. 2019 May 9;11(5):425. doi: 10.3390/v11050425.
3
Two sides of the same coin: A population genetics perspective on lethal mutagenesis and mutational meltdown.
Virus Evol. 2017 Mar 2;3(1):vex004. doi: 10.1093/ve/vex004. eCollection 2017 Jan.
5
Differences in adaptive dynamics determine the success of virus variants that propagate together.
Virus Evol. 2018 Jan 9;4(1):vex043. doi: 10.1093/ve/vex043. eCollection 2018 Jan.
6
Comprehensive experimental fitness landscape and evolutionary network for small RNA.
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14984-9. doi: 10.1073/pnas.1307604110. Epub 2013 Aug 26.
7
RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts.
J Biomol NMR. 2012 Apr;52(4):289-302. doi: 10.1007/s10858-012-9603-z. Epub 2012 Feb 23.
8
Rapid construction of empirical RNA fitness landscapes.
Science. 2010 Oct 15;330(6002):376-9. doi: 10.1126/science.1192001.
9
Variable mutation rates as an adaptive strategy in replicator populations.
PLoS One. 2010 Jun 17;5(6):e11186. doi: 10.1371/journal.pone.0011186.
10
Lethal mutagenesis and evolutionary epidemiology.
Philos Trans R Soc Lond B Biol Sci. 2010 Jun 27;365(1548):1953-63. doi: 10.1098/rstb.2010.0058.

本文引用的文献

1
THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION.
Evolution. 1998 Aug;52(4):935-949. doi: 10.1111/j.1558-5646.1998.tb01823.x.
2
A trade-off between neutrality and adaptability limits the optimization of viral quasispecies.
J Theor Biol. 2009 Nov 7;261(1):148-55. doi: 10.1016/j.jtbi.2009.07.034. Epub 2009 Aug 5.
3
The distribution of fitness effects of beneficial mutations in Pseudomonas aeruginosa.
PLoS Genet. 2009 Mar;5(3):e1000406. doi: 10.1371/journal.pgen.1000406. Epub 2009 Mar 6.
4
Beneficial effects of population bottlenecks in an RNA virus evolving at increased error rate.
J Mol Biol. 2008 Dec 31;384(5):1120-9. doi: 10.1016/j.jmb.2008.10.014. Epub 2008 Oct 14.
5
Beneficial fitness effects are not exponential for two viruses.
J Mol Evol. 2008 Oct;67(4):368-76. doi: 10.1007/s00239-008-9153-x. Epub 2008 Sep 9.
6
On the structural repertoire of pools of short, random RNA sequences.
J Theor Biol. 2008 Jun 21;252(4):750-63. doi: 10.1016/j.jtbi.2008.02.018. Epub 2008 Mar 10.
7
The distribution of fitness effects of new mutations.
Nat Rev Genet. 2007 Aug;8(8):610-8. doi: 10.1038/nrg2146.
8
Collective properties of evolving molecular quasispecies.
BMC Evol Biol. 2007 Jul 9;7:110. doi: 10.1186/1471-2148-7-110.
9
Understanding the evolutionary fate of finite populations: the dynamics of mutational effects.
PLoS Biol. 2007 Apr;5(4):e94. doi: 10.1371/journal.pbio.0050094.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验