文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

增强现实(AR)在手术机器人和自主系统中的应用:现状、挑战和解决方案。

Augmented Reality (AR) for Surgical Robotic and Autonomous Systems: State of the Art, Challenges, and Solutions.

机构信息

Mechanical Engineering Group, School of Engineering, University of Kent, Canterbury CT2 7NT, UK.

School of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK.

出版信息

Sensors (Basel). 2023 Jul 6;23(13):6202. doi: 10.3390/s23136202.


DOI:10.3390/s23136202
PMID:37448050
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10347167/
Abstract

Despite the substantial progress achieved in the development and integration of augmented reality (AR) in surgical robotic and autonomous systems (RAS), the center of focus in most devices remains on improving end-effector dexterity and precision, as well as improved access to minimally invasive surgeries. This paper aims to provide a systematic review of different types of state-of-the-art surgical robotic platforms while identifying areas for technological improvement. We associate specific control features, such as haptic feedback, sensory stimuli, and human-robot collaboration, with AR technology to perform complex surgical interventions for increased user perception of the augmented world. Current researchers in the field have, for long, faced innumerable issues with low accuracy in tool placement around complex trajectories, pose estimation, and difficulty in depth perception during two-dimensional medical imaging. A number of robots described in this review, such as Novarad and SpineAssist, are analyzed in terms of their hardware features, computer vision systems (such as deep learning algorithms), and the clinical relevance of the literature. We attempt to outline the shortcomings in current optimization algorithms for surgical robots (such as YOLO and LTSM) whilst providing mitigating solutions to internal tool-to-organ collision detection and image reconstruction. The accuracy of results in robot end-effector collisions and reduced occlusion remain promising within the scope of our research, validating the propositions made for the surgical clearance of ever-expanding AR technology in the future.

摘要

尽管在手术机器人和自主系统(RAS)中增强现实(AR)的开发和集成方面取得了重大进展,但大多数设备的关注焦点仍然在于提高末端执行器的灵活性和精度,以及改善微创手术的可及性。本文旨在对不同类型的最先进手术机器人平台进行系统综述,同时确定技术改进的领域。我们将特定的控制特征(如触觉反馈、感官刺激和人机协作)与 AR 技术相关联,以执行复杂的手术干预,从而提高用户对增强世界的感知。该领域的当前研究人员长期以来一直面临着许多问题,例如在复杂轨迹、姿势估计和二维医学成像中的深度感知方面,工具放置的精度低。本文分析了许多机器人,例如 Novarad 和 SpineAssist,从硬件特性、计算机视觉系统(如深度学习算法)以及文献的临床相关性方面进行了分析。我们试图概述手术机器人中当前优化算法的缺点(例如 YOLO 和 LTSM),同时为内部工具-器官碰撞检测和图像重建提供缓解方案。在我们的研究范围内,机器人末端执行器碰撞和减少遮挡的结果准确性仍然很有前途,验证了在未来不断扩展的 AR 技术的手术清除方面提出的主张。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/90c83f7d0e9b/sensors-23-06202-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/058fcd4828d9/sensors-23-06202-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/de056e737593/sensors-23-06202-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/f7180b13f106/sensors-23-06202-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/bb434eeda21a/sensors-23-06202-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/91a4b98543ec/sensors-23-06202-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/732ade16181b/sensors-23-06202-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/90c83f7d0e9b/sensors-23-06202-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/058fcd4828d9/sensors-23-06202-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/de056e737593/sensors-23-06202-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/f7180b13f106/sensors-23-06202-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/bb434eeda21a/sensors-23-06202-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/91a4b98543ec/sensors-23-06202-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/732ade16181b/sensors-23-06202-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c97/10347167/90c83f7d0e9b/sensors-23-06202-g007.jpg

相似文献

[1]
Augmented Reality (AR) for Surgical Robotic and Autonomous Systems: State of the Art, Challenges, and Solutions.

Sensors (Basel). 2023-7-6

[2]
A bibliometric analysis of augmented reality and mixed reality applied in minimally invasive surgery.

J Robot Surg. 2025-4-15

[3]
Use of Augmented Reality for Training Assistance in Laparoscopic Surgery: Scoping Literature Review.

J Med Internet Res. 2025-1-28

[4]
The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review.

Surg Endosc. 2009-6

[5]
Augmented Reality (AR) and Cyber-Security for Smart Cities-A Systematic Literature Review.

Sensors (Basel). 2022-4-6

[6]
Robotic surgery in emergency setting: 2021 WSES position paper.

World J Emerg Surg. 2022-1-20

[7]
Application of Virtual and Augmented Reality Technology in Hip Surgery: Systematic Review.

J Med Internet Res. 2023-3-10

[8]
Accuracy of Augmented Reality-Assisted Navigation in Dental Implant Surgery: Systematic Review and Meta-analysis.

J Med Internet Res. 2023-1-4

[9]
Augmented Reality for Human-Robot Collaboration and Cooperation in Industrial Applications: A Systematic Literature Review.

Sensors (Basel). 2022-4-1

[10]
Comparison of Implant Placement Accuracy Between Manual, Robot-Assisted, Computer-Navigated, Augmented Reality Navigated, Patient-Specific Instrumentation, and Accelerometer Navigated Total Hip Arthroplasty: A Systematic Review and Network Meta-Analysis.

JBJS Rev. 2024-11-1

引用本文的文献

[1]
Early Concepts in CT Image-Guided Robotic Vascular Surgery: The Displacement of Retroperitoneal Structures During Simulated Procedures in a Cadaveric Model.

Tomography. 2025-5-23

[2]
Geometrically aware transformer for point cloud analysis.

Sci Rep. 2025-5-13

[3]
HeSARIC: A Heterogeneous Cyber-Physical Robotic Swarm Framework for Structural Health Monitoring with Augmented Reality Representation.

Micromachines (Basel). 2025-4-13

[4]
A bibliometric analysis of augmented reality and mixed reality applied in minimally invasive surgery.

J Robot Surg. 2025-4-15

[5]
The application of augmented reality in robotic general surgery: A mini-review.

Open Med (Wars). 2025-4-1

[6]
Systematic review on the use of artificial intelligence to identify anatomical structures during laparoscopic cholecystectomy: a tool towards the future.

Langenbecks Arch Surg. 2025-3-18

[7]
Virtual 3D models, augmented reality systems and virtual laparoscopic simulations in complicated pancreatic surgeries: state of art, future perspectives, and challenges.

Int J Surg. 2025-3-1

[8]
Application of extended reality in pediatric neurosurgery: A comprehensive review.

Biomed J. 2024-12-8

[9]
Augmented reality for basic skills training in laparoscopic surgery: a systematic review and meta-analysis.

Surg Endosc. 2025-1

[10]
Artificial Intelligence-What to Expect From Machine Learning and Deep Learning in Hernia Surgery.

J Abdom Wall Surg. 2024-9-6

本文引用的文献

[1]
Digital twin in healthcare: Recent updates and challenges.

Digit Health. 2023-1-3

[2]
Verification of delay time and image compression thresholds for telesurgery.

Asian J Endosc Surg. 2023-4

[3]
Towards Autonomous Robotic Minimally Invasive Ultrasound Scanning and Vessel Reconstruction on Non-Planar Surfaces.

Front Robot AI. 2022-10-11

[4]
Augmenting Performance: A Systematic Review of Optical See-Through Head-Mounted Displays in Surgery.

J Imaging. 2022-7-20

[5]
Comparison of Augmented Reality-assisted and Instructor-assisted Cardiopulmonary Resuscitation: A Simulated Randomized Controlled Pilot Trial.

Clin Simul Nurs. 2022-7

[6]
Navigation of frameless fixation for gamma knife radiosurgery using fixed augmented reality.

Sci Rep. 2022-3-16

[7]
Surgical Training for Transanal Total Mesorectal Excision in a Live Animal Model: A Preliminary Experience.

J Laparoendosc Adv Surg Tech A. 2022-8

[8]
Marker-free surgical navigation of rod bending using a stereo neural network and augmented reality in spinal fusion.

Med Image Anal. 2022-4

[9]
Subtalar axis determined by combining digital twins and artificial intelligence: influence of the orientation of this axis for hindfoot compensation of varus and valgus knees.

Int Orthop. 2022-5

[10]
Rehearsals using patient-specific 3D-printed aneurysm models for simulation of endovascular embolization of complex intracranial aneurysms: 3D SIM study.

J Neuroradiol. 2023-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索