Suppr超能文献

硒代半胱氨酸裂解酶对硒/硫区分的反应机制和分子基础。

Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase.

机构信息

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.

出版信息

J Biol Chem. 2010 Apr 16;285(16):12133-9. doi: 10.1074/jbc.M109.084475. Epub 2010 Feb 17.

Abstract

Selenocysteine lyase (SCL) catalyzes the pyridoxal 5'-phosphate-dependent removal of selenium from l-selenocysteine to yield l-alanine. The enzyme is proposed to function in the recycling of the micronutrient selenium from degraded selenoproteins containing selenocysteine residue as an essential component. The enzyme exhibits strict substrate specificity toward l-selenocysteine and no activity to its cognate l-cysteine. However, it remains unclear how the enzyme distinguishes between selenocysteine and cysteine. Here, we present mechanistic studies of selenocysteine lyase from rat. ESI-MS analysis of wild-type and C375A mutant SCL revealed that the catalytic reaction proceeds via the formation of an enzyme-bound selenopersulfide intermediate on the catalytically essential Cys-375 residue. UV-visible spectrum analysis and the crystal structure of SCL complexed with l-cysteine demonstrated that the enzyme reversibly forms a nonproductive adduct with l-cysteine. Cys-375 on the flexible loop directed l-selenocysteine, but not l-cysteine, to the correct position and orientation in the active site to initiate the catalytic reaction. These findings provide, for the first time, the basis for understanding how trace amounts of a selenium-containing substrate is distinguished from excessive amounts of its cognate sulfur-containing compound in a biological system.

摘要

硒半胱氨酸裂解酶(SCL)催化吡哆醛 5'-磷酸依赖的从 l-硒代半胱氨酸中去除硒,生成 l-丙氨酸。该酶被认为在从含有硒代半胱氨酸残基作为必需成分的降解硒蛋白中回收微量元素硒方面起作用。该酶对 l-硒代半胱氨酸表现出严格的底物特异性,对其同源 l-半胱氨酸没有活性。然而,目前尚不清楚该酶如何区分硒代半胱氨酸和半胱氨酸。在这里,我们介绍了来自大鼠的硒半胱氨酸裂解酶的机制研究。ESI-MS 分析野生型和 C375A 突变 SCL 表明,催化反应通过在催化必需的 Cys-375 残基上形成酶结合的硒代亚磺酰基中间体进行。UV-可见光谱分析和 SCL 与 l-半胱氨酸复合物的晶体结构表明,该酶可逆地与 l-半胱氨酸形成非生产性加合物。柔性环上的 Cys-375 将 l-硒代半胱氨酸引导至活性位点的正确位置和方向,而不是 l-半胱氨酸,从而启动催化反应。这些发现首次为理解在生物系统中如何区分痕量含硒底物与其同源含硫化合物提供了依据。

相似文献

1
Reaction mechanism and molecular basis for selenium/sulfur discrimination of selenocysteine lyase.
J Biol Chem. 2010 Apr 16;285(16):12133-9. doi: 10.1074/jbc.M109.084475. Epub 2010 Feb 17.
6
Exploring the selenium-over-sulfur substrate specificity and kinetics of a bacterial selenocysteine lyase.
Biochimie. 2021 Mar;182:166-176. doi: 10.1016/j.biochi.2021.01.002. Epub 2021 Jan 11.
7
Mammalian selenocysteine lyase is involved in selenoprotein biosynthesis.
J Nutr Sci Vitaminol (Tokyo). 2011;57(4):298-305. doi: 10.3177/jnsv.57.298.
9
Mechanistic studies of the SufS-SufE cysteine desulfurase: evidence for sulfur transfer from SufS to SufE.
FEBS Lett. 2003 Dec 4;555(2):263-7. doi: 10.1016/s0014-5793(03)01244-4.

引用本文的文献

1
Oxygen needs sulfur, sulfur needs oxygen: a relationship of interdependence.
EMBO J. 2025 May 20. doi: 10.1038/s44318-025-00464-7.
2
Role of selenium in the pathophysiology of cardiorenal anaemia syndrome.
ESC Heart Fail. 2025 Apr;12(2):770-780. doi: 10.1002/ehf2.14893. Epub 2024 Sep 2.
3
Exploring the selenium-over-sulfur substrate specificity and kinetics of a bacterial selenocysteine lyase.
Biochimie. 2021 Mar;182:166-176. doi: 10.1016/j.biochi.2021.01.002. Epub 2021 Jan 11.
4
Trypanosomatid selenophosphate synthetase structure, function and interaction with selenocysteine lyase.
PLoS Negl Trop Dis. 2020 Oct 5;14(10):e0008091. doi: 10.1371/journal.pntd.0008091. eCollection 2020 Oct.
6
Direct observation of intermediates in the SufS cysteine desulfurase reaction reveals functional roles of conserved active-site residues.
J Biol Chem. 2019 Aug 16;294(33):12444-12458. doi: 10.1074/jbc.RA119.009471. Epub 2019 Jun 27.
7
NADPH-dependent and -independent disulfide reductase systems.
Free Radic Biol Med. 2018 Nov 1;127:248-261. doi: 10.1016/j.freeradbiomed.2018.03.051. Epub 2018 Mar 30.
8
Relationship between selenoprotein P and selenocysteine lyase: Insights into selenium metabolism.
Free Radic Biol Med. 2018 Nov 1;127:182-189. doi: 10.1016/j.freeradbiomed.2018.03.037. Epub 2018 Mar 20.
9
Selenium and Metabolic Disorders: An Emphasis on Type 2 Diabetes Risk.
Nutrients. 2016 Feb 6;8(2):80. doi: 10.3390/nu8020080.
10
Insights into the stereospecificity of the d-specific dehalogenase from sp. RC1 toward d- and l-2-chloropropionate.
Biotechnol Biotechnol Equip. 2014 Jul 4;28(4):608-615. doi: 10.1080/13102818.2014.937907. Epub 2014 Oct 23.

本文引用的文献

1
[33] AMoRe: An automated molecular replacement program package.
Methods Enzymol. 1997;276:581-594. doi: 10.1016/S0076-6879(97)76079-8.
2
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Structure and catalytic mechanism of eukaryotic selenocysteine synthase.
J Biol Chem. 2008 Feb 29;283(9):5849-65. doi: 10.1074/jbc.M709342200. Epub 2007 Dec 19.
4
Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis.
Biochem J. 2007 May 15;404(1):115-20. doi: 10.1042/BJ20070165.
5
Biosynthesis of selenocysteine on its tRNA in eukaryotes.
PLoS Biol. 2007 Jan;5(1):e4. doi: 10.1371/journal.pbio.0050004.
6
Trafficking in persulfides: delivering sulfur in biosynthetic pathways.
Nat Chem Biol. 2006 Apr;2(4):185-94. doi: 10.1038/nchembio779.
9
Role of conserved cysteines in mediating sulfur transfer from IscS to IscU.
FEBS Lett. 2005 Sep 26;579(23):5236-40. doi: 10.1016/j.febslet.2005.08.046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验