Suppr超能文献

NADPH 依赖型和非依赖型二硫键还原酶系统。

NADPH-dependent and -independent disulfide reductase systems.

机构信息

Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.

Division of Biochemistry, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden.

出版信息

Free Radic Biol Med. 2018 Nov 1;127:248-261. doi: 10.1016/j.freeradbiomed.2018.03.051. Epub 2018 Mar 30.

Abstract

Over the past seven decades, research on autotrophic and heterotrophic model organisms has defined how the flow of electrons ("reducing power") from high-energy inorganic sources, through biological systems, to low-energy inorganic products like water, powers all of Life's processes. Universally, an initial major biological recipient of these electrons is nicotinamide adenine dinucleotide-phosphate, which thereby transits from an oxidized state (NADP) to a reduced state (NADPH). A portion of this reducing power is then distributed via the cellular NADPH-dependent disulfide reductase systems as sequential reductions of disulfide bonds. Along the disulfide reduction pathways, some enzymes have active sites that use the selenium-containing amino acid, selenocysteine, in place of the common but less reactive sulfur-containing cysteine. In particular, the mammalian/metazoan thioredoxin systems are usually selenium-dependent as, across metazoan phyla, most thioredoxin reductases are selenoproteins. Among the roles of the NADPH-dependent disulfide reductase systems, the most universal is that they provide the reducing power for the production of DNA precursors by ribonucleotide reductase (RNR). Some studies, however, have uncovered examples of NADPH-independent disulfide reductase systems that can also support RNR. These systems are summarized here and their implications are discussed.

摘要

在过去的七十年中,对自养和异养模式生物的研究定义了电子(“还原力”)如何从高能无机源通过生物系统流向低能无机产物,如水中,从而为所有生命过程提供动力。普遍来说,这些电子的最初主要生物受体是烟酰胺腺嘌呤二核苷酸磷酸(NADP),它由此从氧化态(NADP)转变为还原态(NADPH)。然后,一部分还原力通过细胞 NADPH 依赖性二硫键还原酶系统分配,作为二硫键的连续还原。在二硫键还原途径中,一些酶的活性位点使用含硒的氨基酸硒代半胱氨酸代替常见但反应性较弱的含硫半胱氨酸。特别是,哺乳动物/后生动物硫氧还蛋白系统通常依赖硒,因为在整个后生动物门中,大多数硫氧还蛋白还原酶都是硒蛋白。在 NADPH 依赖性二硫键还原酶系统的众多作用中,最普遍的作用是为核糖核苷酸还原酶 (RNR) 生成 DNA 前体提供还原力。然而,一些研究发现了 NADPH 独立的二硫键还原酶系统也可以支持 RNR 的例子。这里总结了这些系统,并讨论了它们的意义。

相似文献

1
NADPH-dependent and -independent disulfide reductase systems.NADPH 依赖型和非依赖型二硫键还原酶系统。
Free Radic Biol Med. 2018 Nov 1;127:248-261. doi: 10.1016/j.freeradbiomed.2018.03.051. Epub 2018 Mar 30.
5
The thioredoxin antioxidant system.硫氧还蛋白抗氧化系统。
Free Radic Biol Med. 2014 Jan;66:75-87. doi: 10.1016/j.freeradbiomed.2013.07.036. Epub 2013 Jul 27.

引用本文的文献

5
Disulfidptosis in tumor progression.肿瘤进展中的二硫化物诱导细胞死亡
Cell Death Discov. 2025 Apr 28;11(1):205. doi: 10.1038/s41420-025-02495-9.

本文引用的文献

2
The A to Z of modulated cell patterning by mammalian thioredoxin reductases.哺乳动物硫氧还蛋白还原酶调制的细胞图案形成的 A 到 Z。
Free Radic Biol Med. 2018 Feb 1;115:484-496. doi: 10.1016/j.freeradbiomed.2017.12.029. Epub 2017 Dec 24.
3
Alternative Thiol-Based Redox Systems.替代硫醇型氧化还原系统。
Antioxid Redox Signal. 2018 Feb 20;28(6):407-409. doi: 10.1089/ars.2017.7464. Epub 2018 Jan 5.
10
Chemistry and Redox Biology of Mycothiol.巯基葡萄糖的化学和氧化还原生物学
Antioxid Redox Signal. 2018 Feb 20;28(6):487-504. doi: 10.1089/ars.2017.7074. Epub 2017 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验