Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India.
J Biol Chem. 2010 Apr 16;285(16):12121-32. doi: 10.1074/jbc.M109.075721. Epub 2010 Feb 17.
The members of group III hybrid histidine kinases (HHK) are ubiquitous in fungi. Group III HHK have been implicated to function as osmosensors in the high osmolarity glycerol (HOG) pathway that is essential for fungal survival under high osmolarity stress. Recent literature suggests that group III HHK are also involved in conidia formation, virulence in several filamentous fungi, and are an excellent molecular target for antifungal agents. Thus, group III HHK constitute a very important group of sensor kinases. Structurally, group III HHK are distinct from Sln1p, the osmosensing HHK that regulates the HOG pathway in Saccharomyces cerevisiae. Group III HHK lack any transmembrane domain and typically contain HAMP domain repeats at the N terminus. Until now, it is not clear how group III HHK function as an osmosensor to regulate the HOG pathway. To investigate this, we undertook molecular characterization of DhNIK1, an ortholog from osmotolerant yeast Debaryomyces hansenii. We show here that DhNIK1 could complement sln1 mutation in S. cerevisiae thereby confirming its role as a bona fide osmosensor. We further investigated the role of HAMP domains by deleting them systematically. Our results clearly indicate that the HAMP4 domain is crucial for osmosensing by DhNik1p. Most importantly, we also show that the alternative interaction among the HAMP domains regulates the activity of DhNik1p like an "on-off switch" and thus provides, for the first time, an insight into the molecular mechanism of osmosensing by this group of HHKs.
III 组混合组氨酸激酶(HHK)在真菌中普遍存在。III 组 HHK 被认为在高渗透压甘油(HOG)途径中作为渗透压感受器发挥作用,该途径对于真菌在高渗透压胁迫下的生存至关重要。最近的文献表明,III 组 HHK 还参与分生孢子形成、几种丝状真菌的毒力,并且是抗真菌药物的极好的分子靶标。因此,III 组 HHK 构成了非常重要的传感器激酶组。在结构上,III 组 HHK 与 Sln1p 不同,Sln1p 是调节酿酒酵母 HOG 途径的渗透压感应 HHK。III 组 HHK 缺乏任何跨膜结构域,通常在 N 端包含 HAMP 结构域重复序列。到目前为止,尚不清楚 III 组 HHK 如何作为渗透压感受器来调节 HOG 途径。为了研究这一点,我们对耐渗透压酵母德巴利酵母 Hansenii 的同源物 DhNIK1 进行了分子表征。我们在这里表明,DhNIK1 可以在酿酒酵母中补充 sln1 突变,从而证实其作为真正的渗透压感受器的作用。我们进一步通过系统地删除它们来研究 HAMP 结构域的作用。我们的结果清楚地表明,HAMP4 结构域对于 DhNik1p 的渗透压感应至关重要。最重要的是,我们还表明,HAMP 结构域之间的替代相互作用像“开-关”开关一样调节 DhNik1p 的活性,从而首次提供了对该组 HHKs 渗透压感应的分子机制的深入了解。