Suppr超能文献

跨膜黏蛋白Hkr1和Msb2是酵母高渗甘油(HOG)途径SHO1分支中的假定渗透压感受器。

Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway.

作者信息

Tatebayashi Kazuo, Tanaka Keiichiro, Yang Hui-Yu, Yamamoto Katsuyoshi, Matsushita Yusaku, Tomida Taichiro, Imai Midori, Saito Haruo

机构信息

Division of Molecular Cell Signaling, Institute of Medical Sciences, The University of Tokyo, Minato-ku, Tokyo, Japan.

出版信息

EMBO J. 2007 Aug 8;26(15):3521-33. doi: 10.1038/sj.emboj.7601796. Epub 2007 Jul 12.

Abstract

To cope with life-threatening high osmolarity, yeast activates the high-osmolarity glycerol (HOG) signaling pathway, whose core element is the Hog1 MAP kinase cascade. Activated Hog1 regulates the cell cycle, protein translation, and gene expression. Upstream of the HOG pathway are functionally redundant SLN1 and SHO1 signaling branches. However, neither the osmosensor nor the signal generator of the SHO1 branch has been clearly defined. Here, we show that the mucin-like transmembrane proteins Hkr1 and Msb2 are the potential osmosensors for the SHO1 branch. Hyperactive forms of Hkr1 and Msb2 can activate the HOG pathway only in the presence of Sho1, whereas a hyperactive Sho1 mutant activates the HOG pathway in the absence of both Hkr1 and Msb2, indicating that Hkr1 and Msb2 are the most upstream elements known so far in the SHO1 branch. Hkr1 and Msb2 individually form a complex with Sho1, and, upon high external osmolarity stress, appear to induce Sho1 to generate an intracellular signal. Furthermore, Msb2, but not Hkr1, can also generate an intracellular signal in a Sho1-independent manner.

摘要

为应对危及生命的高渗透压,酵母激活高渗透压甘油(HOG)信号通路,其核心元件是Hog1丝裂原活化蛋白激酶(MAPK)级联反应。激活的Hog1调节细胞周期、蛋白质翻译和基因表达。HOG通路的上游是功能冗余的SLN1和SHO1信号分支。然而,SHO1分支的渗透压感受器和信号发生器均未明确界定。在此,我们表明粘蛋白样跨膜蛋白Hkr1和Msb2是SHO1分支的潜在渗透压感受器。Hkr1和Msb2的高活性形式仅在存在Sho1时才能激活HOG通路,而高活性的Sho1突变体在不存在Hkr1和Msb2时也能激活HOG通路,这表明Hkr1和Msb2是迄今为止已知的SHO1分支中最上游的元件。Hkr1和Msb2分别与Sho1形成复合物,并且在高外部渗透压胁迫下,似乎诱导Sho1产生细胞内信号。此外,Msb2而非Hkr1,也能以不依赖Sho1的方式产生细胞内信号。

相似文献

1
Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway.
EMBO J. 2007 Aug 8;26(15):3521-33. doi: 10.1038/sj.emboj.7601796. Epub 2007 Jul 12.
2
Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms.
Sci Signal. 2014 Feb 25;7(314):ra21. doi: 10.1126/scisignal.2004780.
6
Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway.
EMBO J. 2006 Jul 12;25(13):3033-44. doi: 10.1038/sj.emboj.7601192. Epub 2006 Jun 15.
8
Msb2 is a Ste11 membrane concentrator required for full activation of the HOG pathway.
Biochim Biophys Acta. 2015 Jun;1849(6):722-30. doi: 10.1016/j.bbagrm.2015.02.001. Epub 2015 Feb 14.

引用本文的文献

1
Mechanisms and Strategies for Engineering Oxidative Stress Resistance in .
Chem Bio Eng. 2025 May 29;2(7):409-422. doi: 10.1021/cbe.5c00021. eCollection 2025 Jul 24.
2
Transcriptome analysis of Ochratoxin a (OTA) producing fc-1 under varying osmotic pressure.
Mycology. 2024 Oct 29;16(2):903-917. doi: 10.1080/21501203.2024.2408259. eCollection 2025.
3
The relationship mammalian p38 with human health and its homolog Hog1 in response to environmental stresses in .
Front Cell Dev Biol. 2025 Mar 10;13:1522294. doi: 10.3389/fcell.2025.1522294. eCollection 2025.
4
General aspects, host interaction, and application of sp. in arthropod pest and vector control.
Front Fungal Biol. 2024 Nov 20;5:1456964. doi: 10.3389/ffunb.2024.1456964. eCollection 2024.
5
The Cwr1 protein kinase localizes to the plasma membrane and mediates resistance to cell wall stress in .
mSphere. 2024 Dec 19;9(12):e0039124. doi: 10.1128/msphere.00391-24. Epub 2024 Nov 29.
6
A cryptic promoter in the exon of HKR1 drives expression of a truncated form of Hkr1 in Saccharomyces cerevisiae.
PLoS One. 2024 Nov 21;19(11):e0314016. doi: 10.1371/journal.pone.0314016. eCollection 2024.
7
Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals.
iScience. 2024 Aug 31;27(10):110860. doi: 10.1016/j.isci.2024.110860. eCollection 2024 Oct 18.
9
D-Limonene Inhibits Y-11519 in Sichuan Pickles by Disrupting Metabolism.
Molecules. 2024 Jul 28;29(15):3561. doi: 10.3390/molecules29153561.
10
Shared and redundant proteins coordinate signal cross-talk between MAPK pathways in yeast.
Mol Biol Cell. 2024 Oct 1;35(10):ar126. doi: 10.1091/mbc.E24-06-0270. Epub 2024 Jul 31.

本文引用的文献

1
Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway.
EMBO J. 2006 Jul 12;25(13):3033-44. doi: 10.1038/sj.emboj.7601192. Epub 2006 Jun 15.
3
Comparative analysis of HOG pathway proteins to generate hypotheses for functional analysis.
Curr Genet. 2006 Mar;49(3):152-65. doi: 10.1007/s00294-005-0039-9. Epub 2006 Feb 9.
5
Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1.
Nat Cell Biol. 2004 Oct;6(10):997-1002. doi: 10.1038/ncb1174. Epub 2004 Sep 19.
6
7
Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway.
Mol Cell. 2004 Jun 18;14(6):825-32. doi: 10.1016/j.molcel.2004.06.011.
9
Optimization of specificity in a cellular protein interaction network by negative selection.
Nature. 2003 Dec 11;426(6967):676-80. doi: 10.1038/nature02178.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验