Tatebayashi Kazuo, Tanaka Keiichiro, Yang Hui-Yu, Yamamoto Katsuyoshi, Matsushita Yusaku, Tomida Taichiro, Imai Midori, Saito Haruo
Division of Molecular Cell Signaling, Institute of Medical Sciences, The University of Tokyo, Minato-ku, Tokyo, Japan.
EMBO J. 2007 Aug 8;26(15):3521-33. doi: 10.1038/sj.emboj.7601796. Epub 2007 Jul 12.
To cope with life-threatening high osmolarity, yeast activates the high-osmolarity glycerol (HOG) signaling pathway, whose core element is the Hog1 MAP kinase cascade. Activated Hog1 regulates the cell cycle, protein translation, and gene expression. Upstream of the HOG pathway are functionally redundant SLN1 and SHO1 signaling branches. However, neither the osmosensor nor the signal generator of the SHO1 branch has been clearly defined. Here, we show that the mucin-like transmembrane proteins Hkr1 and Msb2 are the potential osmosensors for the SHO1 branch. Hyperactive forms of Hkr1 and Msb2 can activate the HOG pathway only in the presence of Sho1, whereas a hyperactive Sho1 mutant activates the HOG pathway in the absence of both Hkr1 and Msb2, indicating that Hkr1 and Msb2 are the most upstream elements known so far in the SHO1 branch. Hkr1 and Msb2 individually form a complex with Sho1, and, upon high external osmolarity stress, appear to induce Sho1 to generate an intracellular signal. Furthermore, Msb2, but not Hkr1, can also generate an intracellular signal in a Sho1-independent manner.
为应对危及生命的高渗透压,酵母激活高渗透压甘油(HOG)信号通路,其核心元件是Hog1丝裂原活化蛋白激酶(MAPK)级联反应。激活的Hog1调节细胞周期、蛋白质翻译和基因表达。HOG通路的上游是功能冗余的SLN1和SHO1信号分支。然而,SHO1分支的渗透压感受器和信号发生器均未明确界定。在此,我们表明粘蛋白样跨膜蛋白Hkr1和Msb2是SHO1分支的潜在渗透压感受器。Hkr1和Msb2的高活性形式仅在存在Sho1时才能激活HOG通路,而高活性的Sho1突变体在不存在Hkr1和Msb2时也能激活HOG通路,这表明Hkr1和Msb2是迄今为止已知的SHO1分支中最上游的元件。Hkr1和Msb2分别与Sho1形成复合物,并且在高外部渗透压胁迫下,似乎诱导Sho1产生细胞内信号。此外,Msb2而非Hkr1,也能以不依赖Sho1的方式产生细胞内信号。