Suppr超能文献

实现中庸之道:冠状病毒确保病毒蛋白正确化学计量比合成的机制。

Achieving a golden mean: mechanisms by which coronaviruses ensure synthesis of the correct stoichiometric ratios of viral proteins.

机构信息

Laboratory of Hepatitis and Related Emerging Agents, Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, CBER, FDA, 8800 Rockville Pike, HFM310, Bethesda, Maryland 20892, USA.

出版信息

J Virol. 2010 May;84(9):4330-40. doi: 10.1128/JVI.02480-09. Epub 2010 Feb 17.

Abstract

In retroviruses and the double-stranded RNA totiviruses, the efficiency of programmed -1 ribosomal frameshifting is critical for ensuring the proper ratios of upstream-encoded capsid proteins to downstream-encoded replicase enzymes. The genomic organizations of many other frameshifting viruses, including the coronaviruses, are very different, in that their upstream open reading frames encode nonstructural proteins, the frameshift-dependent downstream open reading frames encode enzymes involved in transcription and replication, and their structural proteins are encoded by subgenomic mRNAs. The biological significance of frameshifting efficiency and how the relative ratios of proteins encoded by the upstream and downstream open reading frames affect virus propagation has not been explored before. Here, three different strategies were employed to test the hypothesis that the -1 PRF signals of coronaviruses have evolved to produce the correct ratios of upstream- to downstream-encoded proteins. Specifically, infectious clones of the severe acute respiratory syndrome (SARS)-associated coronavirus harboring mutations that lower frameshift efficiency decreased infectivity by >4 orders of magnitude. Second, a series of frameshift-promoting mRNA pseudoknot mutants was employed to demonstrate that the frameshift signals of the SARS-associated coronavirus and mouse hepatitis virus have evolved to promote optimal frameshift efficiencies. Finally, we show that a previously described frameshift attenuator element does not actually affect frameshifting per se but rather serves to limit the fraction of ribosomes available for frameshifting. The findings of these analyses all support a "golden mean" model in which viruses use both programmed ribosomal frameshifting and translational attenuation to control the relative ratios of their encoded proteins.

摘要

在逆转录病毒和双链 RNA 呼肠孤病毒中,核糖体 -1 程序性移码的效率对于确保上游编码衣壳蛋白与下游编码复制酶的正确比例至关重要。许多其他移码病毒的基因组组织非常不同,因为它们的上游开放阅读框编码非结构蛋白,依赖移码的下游开放阅读框编码参与转录和复制的酶,而它们的结构蛋白则由亚基因组 mRNA 编码。移码效率的生物学意义以及上游和下游开放阅读框编码的蛋白质的相对比例如何影响病毒的传播尚未得到探索。在这里,采用了三种不同的策略来检验这样一种假设,即冠状病毒的-1 PRF 信号已经进化到产生正确的上游编码蛋白与下游编码蛋白的比例。具体来说,含有降低移码效率突变的严重急性呼吸综合征(SARS)相关冠状病毒的感染性克隆使感染力降低了超过 4 个数量级。其次,采用了一系列促进移码的 mRNA 假结突变体来证明 SARS 相关冠状病毒和鼠肝炎病毒的移码信号已经进化到促进最佳的移码效率。最后,我们表明,先前描述的移码衰减元件实际上并不影响移码本身,而是限制用于移码的核糖体的分数。这些分析的结果都支持一个“黄金均值”模型,即病毒既使用核糖体程序性移码又使用翻译衰减来控制其编码蛋白的相对比例。

相似文献

3
A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.
PLoS Biol. 2005 Jun;3(6):e172. doi: 10.1371/journal.pbio.0030172. Epub 2005 May 17.
4
Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV.
Virus Res. 2006 Jul;119(1):29-42. doi: 10.1016/j.virusres.2005.10.008. Epub 2005 Nov 28.
5
The role of programmed-1 ribosomal frameshifting in coronavirus propagation.
Front Biosci. 2008 May 1;13:4873-81. doi: 10.2741/3046.
6
An atypical RNA pseudoknot stimulator and an upstream attenuation signal for -1 ribosomal frameshifting of SARS coronavirus.
Nucleic Acids Res. 2005 Jul 29;33(13):4265-75. doi: 10.1093/nar/gki731. Print 2005.
8
Programmed -1 ribosomal frameshifting in the SARS coronavirus.
Biochem Soc Trans. 2004 Dec;32(Pt 6):1081-3. doi: 10.1042/BST0321081.
10
Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication.
Antiviral Res. 2011 Jul;91(1):1-10. doi: 10.1016/j.antiviral.2011.04.009. Epub 2011 Apr 23.

引用本文的文献

1
A Cascade of Conformational Switches in SARS-CoV-2 Frameshifting: Coregulation by Upstream and Downstream Elements.
Biochemistry. 2025 Feb 18;64(4):953-966. doi: 10.1021/acs.biochem.4c00641. Epub 2025 Feb 5.
2
The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery.
J Biol Chem. 2025 Jan;301(1):108079. doi: 10.1016/j.jbc.2024.108079. Epub 2024 Dec 14.
3
Cyclic peptides targeting the SARS-CoV-2 programmed ribosomal frameshifting RNA from a multiplexed phage display library.
Chem Sci. 2024 Oct 17;15(46):19520-19533. doi: 10.1039/d4sc04026k. eCollection 2024 Nov 27.
5
An intricate balancing act: Upstream and downstream frameshift co-regulatory elements.
bioRxiv. 2024 Jun 27:2024.06.27.599960. doi: 10.1101/2024.06.27.599960.
6
Mechanism, structural and functional insights into nidovirus-induced double-membrane vesicles.
Front Immunol. 2024 Jun 11;15:1340332. doi: 10.3389/fimmu.2024.1340332. eCollection 2024.
8
Structure of the SARS-CoV-2 Frameshift Stimulatory Element with an Upstream Multibranch Loop.
Biochemistry. 2024 May 21;63(10):1287-1296. doi: 10.1021/acs.biochem.3c00716. Epub 2024 May 10.
9
Coronavirus takeover of host cell translation and intracellular antiviral response: a molecular perspective.
EMBO J. 2024 Jan;43(2):151-167. doi: 10.1038/s44318-023-00019-8. Epub 2024 Jan 10.
10
Programmable modulation of ribosomal frameshifting by mRNA targeting CRISPR-Cas12a system.
iScience. 2023 Nov 19;26(12):108492. doi: 10.1016/j.isci.2023.108492. eCollection 2023 Dec 15.

本文引用的文献

3
Frameshifting RNA pseudoknots: structure and mechanism.
Virus Res. 2009 Feb;139(2):193-208. doi: 10.1016/j.virusres.2008.06.008. Epub 2008 Jul 25.
4
The role of programmed-1 ribosomal frameshifting in coronavirus propagation.
Front Biosci. 2008 May 1;13:4873-81. doi: 10.2741/3046.
5
Severe acute respiratory syndrome coronavirus infection in vaccinated ferrets.
J Infect Dis. 2007 Nov 1;196(9):1329-38. doi: 10.1086/522431. Epub 2007 Sep 27.
7
Clustal W and Clustal X version 2.0.
Bioinformatics. 2007 Nov 1;23(21):2947-8. doi: 10.1093/bioinformatics/btm404. Epub 2007 Sep 10.
9
SYBR Green real-time reverse transcription-polymerase chain reaction assay for the generic detection of coronaviruses.
Arch Virol. 2007 Jan;152(1):41-58. doi: 10.1007/s00705-006-0840-x. Epub 2006 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验