Suppr超能文献

程序性-1核糖体移码在冠状病毒传播中的作用。

The role of programmed-1 ribosomal frameshifting in coronavirus propagation.

作者信息

Plant Ewan P, Dinman Jonathan D

机构信息

Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.

出版信息

Front Biosci. 2008 May 1;13:4873-81. doi: 10.2741/3046.

Abstract

Coronaviruses have the potential to cause significant economic, agricultural and health problems. The severe acute respiratory syndrome (SARS) associated coronavirus outbreak in late 2002, early 2003 called attention to the potential damage that coronaviruses could cause in the human population. The ensuing research has enlightened many to the molecular biology of coronaviruses. A programmed -1 ribosomal frameshift is required by coronaviruses for the production of the RNA dependent RNA polymerase which in turn is essential for viral replication. The frameshifting signal encoded in the viral genome has additional features that are not essential for frameshifting. Elucidation of the differences between coronavirus frameshift signals and signals from other viruses may help our understanding of these features. Here we summarize current knowledge and add additional insight regarding the function of the programmed -1 ribosomal frameshift signal in the coronavirus lifecycle.

摘要

冠状病毒有引发重大经济、农业和健康问题的可能性。2002年末至2003年初与严重急性呼吸综合征(SARS)相关的冠状病毒爆发,使人们注意到冠状病毒可能对人类造成的潜在损害。随后的研究让许多人了解了冠状病毒的分子生物学。冠状病毒产生依赖RNA的RNA聚合酶需要程序性-1核糖体移码,而这种聚合酶对病毒复制至关重要。病毒基因组中编码的移码信号还有其他对移码并非必需的特征。阐明冠状病毒移码信号与其他病毒信号之间的差异可能有助于我们理解这些特征。在此,我们总结当前的知识,并对程序性-1核糖体移码信号在冠状病毒生命周期中的功能提供更多见解。

相似文献

1
The role of programmed-1 ribosomal frameshifting in coronavirus propagation.
Front Biosci. 2008 May 1;13:4873-81. doi: 10.2741/3046.
5
Programmed -1 ribosomal frameshifting in the SARS coronavirus.
Biochem Soc Trans. 2004 Dec;32(Pt 6):1081-3. doi: 10.1042/BST0321081.
6
Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV.
Virus Res. 2006 Jul;119(1):29-42. doi: 10.1016/j.virusres.2005.10.008. Epub 2005 Nov 28.
7
Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication.
Antiviral Res. 2011 Jul;91(1):1-10. doi: 10.1016/j.antiviral.2011.04.009. Epub 2011 Apr 23.
8
Programmed ribosomal frameshifting in decoding the SARS-CoV genome.
Virology. 2005 Feb 20;332(2):498-510. doi: 10.1016/j.virol.2004.11.038.
9
Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target.
Virology. 2021 Feb;554:75-82. doi: 10.1016/j.virol.2020.12.010. Epub 2020 Dec 25.
10
A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal.
PLoS Biol. 2005 Jun;3(6):e172. doi: 10.1371/journal.pbio.0030172. Epub 2005 May 17.

引用本文的文献

1
Versatility of the Zinc-Finger Antiviral Protein (ZAP) As a Modulator of Viral Infections.
Int J Biol Sci. 2024 Aug 26;20(12):4585-4600. doi: 10.7150/ijbs.98029. eCollection 2024.
2
Evaluation of the effect of RNA secondary structure on Cas13d-mediated target RNA cleavage.
Mol Ther Nucleic Acids. 2024 Jul 20;35(3):102278. doi: 10.1016/j.omtn.2024.102278. eCollection 2024 Sep 10.
4
Peptide nucleic acids (PNAs) control function of SARS-CoV-2 frameshifting stimulatory element trough PNA-RNA-PNA triplex formation.
Heliyon. 2024 Jun 29;10(13):e33914. doi: 10.1016/j.heliyon.2024.e33914. eCollection 2024 Jul 15.
5
Mechanism, structural and functional insights into nidovirus-induced double-membrane vesicles.
Front Immunol. 2024 Jun 11;15:1340332. doi: 10.3389/fimmu.2024.1340332. eCollection 2024.
9
Structural diversity and biological role of the 5' untranslated regions of picornavirus.
RNA Biol. 2023 Jan;20(1):548-562. doi: 10.1080/15476286.2023.2240992.
10
Towards Understanding Long COVID: SARS-CoV-2 Strikes the Host Cell Nucleus.
Pathogens. 2023 Jun 6;12(6):806. doi: 10.3390/pathogens12060806.

本文引用的文献

1
Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding.
PLoS One. 2007 Sep 19;2(9):e905. doi: 10.1371/journal.pone.0000905.
3
pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W320-4. doi: 10.1093/nar/gkm258. Epub 2007 May 3.
4
Evolutionary insights into the ecology of coronaviruses.
J Virol. 2007 Apr;81(8):4012-20. doi: 10.1128/JVI.02605-06. Epub 2007 Jan 31.
7
A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus.
EMBO J. 2006 Oct 18;25(20):4933-42. doi: 10.1038/sj.emboj.7601368. Epub 2006 Oct 5.
8
trans regulation of cap-independent translation by a viral subgenomic RNA.
J Virol. 2006 Oct;80(20):10045-54. doi: 10.1128/JVI.00991-06.
9
A contemporary view of coronavirus transcription.
J Virol. 2007 Jan;81(1):20-9. doi: 10.1128/JVI.01358-06. Epub 2006 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验