Suppr超能文献

靶向 p53 用于新型抗癌疗法。

Targeting p53 for Novel Anticancer Therapy.

机构信息

Institute of Medicinal Biotechnology, PUMC&CAMS, Beijing, People's Republic of China, 100050.

出版信息

Transl Oncol. 2010 Feb;3(1):1-12. doi: 10.1593/tlo.09250.

Abstract

Carcinogenesis is a multistage process, involving oncogene activation and tumor suppressor gene inactivation as well as complex interactions between tumor and host tissues, leading ultimately to an aggressive metastatic phenotype. Among many genetic lesions, mutational inactivation of p53 tumor suppressor, the "guardian of the genome," is the most frequent event found in 50% of human cancers. p53 plays a critical role in tumor suppression mainly by inducing growth arrest, apoptosis, and senescence, as well as by blocking angiogenesis. In addition, p53 generally confers the cancer cell sensitivity to chemoradiation. Thus, p53 becomes the most appealing target for mechanism-driven anticancer drug discovery. This review will focus on the approaches currently undertaken to target p53 and its regulators with an overall goal either to activate p53 in cancer cells for killing or to inactivate p53 temporarily in normal cells for chemoradiation protection. The compounds that activate wild type (wt) p53 would have an application for the treatment of wt p53-containing human cancer. Likewise, the compounds that change p53 conformation from mutant to wt p53 (p53 reactivation) or that kill the cancer cells with mutant p53 using a synthetic lethal mechanism can be used to selectively treat human cancer harboring a mutant p53. The inhibitors of wt p53 can be used on a temporary basis to reduce the normal cell toxicity derived from p53 activation. Thus, successful development of these three classes of p53 modulators, to be used alone or in combination with chemoradiation, will revolutionize current anticancer therapies and benefit cancer patients.

摘要

癌症发生是一个多阶段的过程,涉及癌基因的激活和肿瘤抑制基因的失活,以及肿瘤和宿主组织之间的复杂相互作用,最终导致侵袭性转移表型。在许多遗传损伤中,p53 肿瘤抑制基因的突变失活是最常见的事件,在 50%的人类癌症中发现。p53 通过诱导生长停滞、细胞凋亡和衰老,以及阻止血管生成,在肿瘤抑制中发挥关键作用。此外,p53 通常赋予癌细胞对化学放射治疗的敏感性。因此,p53 成为最具吸引力的机制驱动抗癌药物发现的靶点。本综述将重点介绍目前针对 p53 及其调节剂的方法,总体目标是要么在癌细胞中激活 p53 以杀死,要么在正常细胞中暂时失活 p53 以进行化学放射保护。激活野生型(wt)p53 的化合物将可用于治疗含有 wt p53 的人类癌症。同样,改变 p53 构象从突变型到 wt p53(p53 再激活)的化合物,或使用合成致死机制杀死携带突变型 p53 的癌细胞的化合物,可用于选择性治疗携带突变型 p53 的人类癌症。wt p53 的抑制剂可在临时基础上降低源自 p53 激活的正常细胞毒性。因此,这三类 p53 调节剂的成功开发,单独或与化学放射治疗联合使用,将彻底改变当前的抗癌治疗方法,使癌症患者受益。

相似文献

1
Targeting p53 for Novel Anticancer Therapy.
Transl Oncol. 2010 Feb;3(1):1-12. doi: 10.1593/tlo.09250.
2
Restoration of wild-type p53 function in human cancer: relevance for tumor therapy.
Head Neck. 2007 Mar;29(3):272-84. doi: 10.1002/hed.20529.
3
Loss of p53 function at late stages of tumorigenesis confers ARF-dependent vulnerability to p53 reactivation therapy.
Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22288-22293. doi: 10.1073/pnas.1910255116. Epub 2019 Oct 14.
4
Awakening the "guardian of genome": reactivation of mutant p53.
Cancer Chemother Pharmacol. 2019 Jan;83(1):1-15. doi: 10.1007/s00280-018-3701-x. Epub 2018 Oct 15.
6
P53: an ubiquitous target of anticancer drugs.
Int J Cancer. 2002 Mar 10;98(2):161-6. doi: 10.1002/ijc.10158.
7
Natural products targeting the p53-MDM2 pathway and mutant p53: Recent advances and implications in cancer medicine.
Genes Dis. 2018 Jul 20;5(3):204-219. doi: 10.1016/j.gendis.2018.07.002. eCollection 2018 Sep.
9
Metformin Synergizes with BCL-XL/BCL-2 Inhibitor ABT-263 to Induce Apoptosis Specifically in p53-Defective Cancer Cells.
Mol Cancer Ther. 2017 Sep;16(9):1806-1818. doi: 10.1158/1535-7163.MCT-16-0763. Epub 2017 May 22.
10
Chemical Variations on the p53 Reactivation Theme.
Pharmaceuticals (Basel). 2016 May 13;9(2):25. doi: 10.3390/ph9020025.

引用本文的文献

2
Targeting p53-p21 signaling to enhance mesenchymal stem cell regenerative potential.
Regen Ther. 2025 Apr 7;29:352-363. doi: 10.1016/j.reth.2025.03.007. eCollection 2025 Jun.
3
MiRNAs: main players of cancer drug resistance target ABC transporters.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Jan 14. doi: 10.1007/s00210-024-03719-y.
6
Caspase-8 and Tyrosine Kinases: A Dangerous Liaison in Cancer.
Cancers (Basel). 2023 Jun 21;15(13):3271. doi: 10.3390/cancers15133271.
7
PROTACs: A novel strategy for cancer drug discovery and development.
MedComm (2020). 2023 May 29;4(3):e290. doi: 10.1002/mco2.290. eCollection 2023 Jun.
9
Recent findings on the role of wild-type and mutant p53 in cancer development and therapy.
Front Mol Biosci. 2022 Sep 26;9:903075. doi: 10.3389/fmolb.2022.903075. eCollection 2022.

本文引用的文献

1
Cardiac glycosides inhibit p53 synthesis by a mechanism relieved by Src or MAPK inhibition.
Cancer Res. 2009 Aug 15;69(16):6556-64. doi: 10.1158/0008-5472.CAN-09-0891.
2
Cancer prevention research - then and now.
Nat Rev Cancer. 2009 Jul;9(7):508-16. doi: 10.1038/nrc2646. Epub 2009 Jun 18.
3
Can green tea do that? A literature review of the clinical evidence.
Prev Med. 2009 Aug-Sep;49(2-3):83-7. doi: 10.1016/j.ypmed.2009.05.005. Epub 2009 May 22.
4
Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis.
Cancer Cell. 2009 May 5;15(5):441-53. doi: 10.1016/j.ccr.2009.03.021.
5
PRIMA-1 reactivates mutant p53 by covalent binding to the core domain.
Cancer Cell. 2009 May 5;15(5):376-88. doi: 10.1016/j.ccr.2009.03.003.
6
Regulation of XIAP translation and induction by MDM2 following irradiation.
Cancer Cell. 2009 May 5;15(5):363-75. doi: 10.1016/j.ccr.2009.03.002.
7
Cytoplasmic functions of the tumour suppressor p53.
Nature. 2009 Apr 30;458(7242):1127-30. doi: 10.1038/nature07986.
8
Targeting p53 for enhanced radio- and chemo-sensitivity.
Apoptosis. 2009 Apr;14(4):597-606. doi: 10.1007/s10495-009-0330-1.
9
A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53.
Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3964-9. doi: 10.1073/pnas.0813333106. Epub 2009 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验