Suppr超能文献

基于离散小波变换和支持向量机的膜蛋白类型预测。

Prediction of the types of membrane proteins based on discrete wavelet transform and support vector machines.

机构信息

Department of Chemistry and Institute for Advanced Study, Nanchang University, 330031, Nanchang, People's Republic of China.

出版信息

Protein J. 2010 Feb;29(2):114-9. doi: 10.1007/s10930-010-9230-z.

Abstract

Membrane proteins are crucial for many biological functions and have become attractive targets for both basic research and drug discovery. With the unprecedented increasing of newly found protein sequences in the post-genomic era, it is both time-consuming and expensive to determine the types of newly found membrane proteins solely with traditional experiment, and so it is highly demanded to develop an automatic method for fast and accurately identifying the type of membrane proteins according to their amino acid sequences. In this study, the discrete wavelet transform (DWT) and support vector machine (SVM) have been used for the prediction of the types of membrane proteins. Maximum accuracy has been obtained using SVM with a wavelet function of bior2.4, a decomposition scale j = 4, and Kyte-Doolittle hydrophobicity scales. The results indicate that the proposed method may play an important complementary role to the existing methods in this area.

摘要

膜蛋白对于许多生物功能至关重要,已成为基础研究和药物发现的热门目标。在后基因组时代,新发现的蛋白质序列数量空前增加,仅通过传统实验确定新发现的膜蛋白的类型既耗时又昂贵,因此非常需要开发一种自动方法,根据其氨基酸序列快速准确地识别膜蛋白的类型。在这项研究中,离散小波变换 (DWT) 和支持向量机 (SVM) 已被用于预测膜蛋白的类型。使用具有 bior2.4 小波函数、分解尺度 j = 4 和 Kyte-Doolittle 疏水性尺度的 SVM 获得了最高的准确性。结果表明,该方法可能在该领域的现有方法中发挥重要的补充作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验