Suppr超能文献

使用无网格计算流体动力学和遗传算法优化来最小化旁路移植吻合术中的壁面剪应力梯度。

Minimisation of the wall shear stress gradients in bypass grafts anastomoses using meshless CFD and genetic algorithms optimisation.

作者信息

El Zahab Zaher, Divo Eduardo, Kassab Alain

机构信息

Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA.

出版信息

Comput Methods Biomech Biomed Engin. 2010 Feb;13(1):35-47. doi: 10.1080/10255840903013555.

Abstract

The wall shear stress (WSS) spatial and temporal gradients are two hemodynamics parameters correlated with endothelial damage. Those two gradients become well pronounced in a bypass graft anastomosis geometry where the blood flow patterns are quite disturbed. The WSS gradient minimisation on the host artery floor can be achieved by optimising the anastomosis shape and hence may lead to an improved long-term post-surgical performance of the graft. The anastomosis shape optimisation can be executed via an integrated computational tool comprised of a meshless computational fluid dynamics (CFD) solver and a genetic algorithm (GA) shape optimiser. The meshless CFD solver serves to evaluate the WSS gradients and the GA optimiser serves to search for the end-to-side distal anastomosis (ETSDA) optimal shape that best minimises those gradients. We utilise a meshless CFD method to resolve hemodynamics and a GA for the purpose of optimisation. We consider three different anastomotic models: the conventional ETSDA, the Miller Cuff ETSDA and the hood ETSDA. The results reported herein demonstrate that the graft calibre should always be maximised whether a conventional or Miller Cuff ETSDA model is utilised. Also, it was noted that the Miller Cuff height should be minimised. The choice of an optimal anastomotic angle should be optimised to achieve a compromise between the concurrent minimisations of both the spatial WSS gradient and the temporal WSS gradient.

摘要

壁面剪应力(WSS)的空间和时间梯度是与内皮损伤相关的两个血流动力学参数。在血流模式受到相当大干扰的旁路移植吻合几何结构中,这两个梯度变得非常明显。通过优化吻合形状,可以实现宿主动脉底部的WSS梯度最小化,从而可能改善移植物的术后长期性能。吻合形状优化可以通过一个集成计算工具来执行,该工具由无网格计算流体动力学(CFD)求解器和遗传算法(GA)形状优化器组成。无网格CFD求解器用于评估WSS梯度,GA优化器用于寻找能使这些梯度最小化的端侧远端吻合(ETSDA)最佳形状。我们利用无网格CFD方法来解析血流动力学,并使用GA进行优化。我们考虑三种不同的吻合模型:传统的ETSDA、米勒袖带ETSDA和帽状ETSDA。本文报道的结果表明,无论使用传统的还是米勒袖带ETSDA模型,移植物口径都应始终最大化。此外,还注意到米勒袖带高度应最小化。应优化最佳吻合角度的选择,以便在同时最小化空间WSS梯度和时间WSS梯度之间达成妥协。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验