秀丽隐杆线虫亲缘线虫的经验依赖性运动行为和生物胺神经元的比较。
A comparison of experience-dependent locomotory behaviors and biogenic amine neurons in nematode relatives of Caenorhabditis elegans.
机构信息
Dept of Biology, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
出版信息
BMC Neurosci. 2010 Feb 19;11:22. doi: 10.1186/1471-2202-11-22.
BACKGROUND
Survival of an animal depends on its ability to match its responses to environmental conditions. To generate an optimal behavioral output, the nervous system must process sensory information and generate a directed motor output in response to stimuli. The nervous system should also store information about experiences to use in the future. The diverse group of free-living nematodes provides an excellent system to study macro- and microevolution of molecular, morphological and behavioral character states associated with such nervous system function. We asked whether an adaptive behavior would vary among bacterivorous nematodes and whether differences in the neurotransmitter systems known to regulate the behavior in one species would reflect differences seen in the adaptive behavior among those species. Caenorhabditis elegans worms slow in the presence of food; this 'basal' slowing is triggered by dopaminergic mechanosensory neurons that detect bacteria. Starved worms slow more dramatically; this 'enhanced' slowing is regulated by serotonin.
RESULTS
We examined seven nematode species with known phylogenetic relationship to C. elegans for locomotory behaviors modulated by food (E. coli), and by the worm's recent history of feeding (being well-fed or starved). We found that locomotory behavior in some species was modulated by food and recent feeding experience in a manner similar to C. elegans, but not all the species tested exhibited these food-modulated behaviors. We also found that some worms had different responses to bacteria other than E. coli. Using histochemical and immunological staining, we found that dopaminergic neurons were very similar among all species. For instance, we saw likely homologs of four bilateral pairs of dopaminergic cephalic and deirid neurons known from C. elegans in all seven species examined. In contrast, there was greater variation in the patterns of serotonergic neurons. The presence of presumptive homologs of dopaminergic and serotonergic neurons in a given species did not correlate with the observed differences in locomotory behaviors.
CONCLUSIONS
This study demonstrates that behaviors can differ significantly between species that appear morphologically very similar, and therefore it is important to consider factors, such as ecology of a species in the wild, when formulating hypotheses about the adaptive significance of a behavior. Our results suggest that evolutionary changes in locomotory behaviors are less likely to be caused by changes in neurotransmitter expression of neurons. Such changes could be caused either by subtle changes in neural circuitry or in the function of the signal transduction pathways mediating these behaviors.
背景
动物的生存取决于其适应环境条件的能力。为了产生最佳的行为输出,神经系统必须处理感觉信息并针对刺激产生定向的运动输出。神经系统还应该存储有关经验的信息,以便将来使用。自由生活的线虫种类繁多,为研究与神经系统功能相关的分子、形态和行为特征状态的宏观和微观进化提供了极好的系统。我们想知道,食细菌线虫之间的适应性行为是否会有所不同,并且已知调节一种物种行为的神经递质系统的差异是否会反映出这些物种之间适应性行为的差异。秀丽隐杆线虫在食物存在的情况下会减慢速度;这种“基础”减速是由检测细菌的多巴胺能机械感觉神经元触发的。饥饿的线虫会更显著地减速;这种“增强”减速由血清素调节。
结果
我们研究了七种与秀丽隐杆线虫具有已知系统发育关系的线虫物种,以研究对食物(大肠杆菌)和最近的摄食经历(饱食或饥饿)调节的运动行为。我们发现,一些物种的运动行为受到食物和最近的摄食经历的调节,其方式与秀丽隐杆线虫相似,但并非所有测试的物种都表现出这些受食物调节的行为。我们还发现,一些线虫对大肠杆菌以外的细菌有不同的反应。使用组织化学和免疫染色,我们发现所有物种的多巴胺能神经元都非常相似。例如,我们在所有七种检查的物种中都看到了与秀丽隐杆线虫中的四个双侧对多巴胺能头和德雷尔神经元的可能同源物。相比之下,血清素神经元的模式存在更大的差异。给定物种中假定的多巴胺能和血清素能神经元的存在与观察到的运动行为差异没有相关性。
结论
这项研究表明,形态上非常相似的物种之间的行为可能存在显著差异,因此在提出关于行为适应性意义的假设时,考虑物种的生态等因素非常重要。我们的结果表明,运动行为的进化变化不太可能是由于神经元神经递质表达的变化引起的。这些变化可能是由于神经回路的细微变化或介导这些行为的信号转导途径的功能变化引起的。
相似文献
Proc Natl Acad Sci U S A. 2019-1-16
J Neurophysiol. 2017-5-1
Mol Biochem Parasitol. 2004-9
引用本文的文献
MicroPubl Biol. 2025-1-6
Genetics. 2024-10-7
Chem Biol Interact. 2023-9-1
本文引用的文献
Philos Trans R Soc Lond B Biol Sci. 1986-11-12
J Nematol. 2003-6
BMC Biol. 2008-12-15
BMC Dev Biol. 2008-4-9
WormBook. 2007-2-20
WormBook. 2006-6-19
WormBook. 2006-1-6
WormBook. 2006-1-9