Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
Biochemistry. 2010 Mar 23;49(11):2416-23. doi: 10.1021/bi9020204.
It is usually assumed that only amino acids located near the retinal chromophore are responsible for color tuning of rhodopsins. However, we recently found that replacement of Ala178 with Arg in the E-F loop of proteorhodopsin (PR), an archaeal-type rhodopsin in marine bacteria, shifts the lambda(max) from 525 to 545 nm at neutral pH [Yoshitsugu, M., Shibata, M., Ikeda, D., Furutani, Y., and Kandori, H. (2008) Angew. Chem., Int. Ed. 47, 3923-3926]. Since the location of Ala178 is distant from the retinal chromophore (approximately 25 A), the molecular mechanism of the unusual mutation effect on color tuning is intriguing. A recent mutation study revealed that the observed color change was highly specific to position 178 [Yoshitsugu, M., Yamada, J., and Kandori, H. (2009) Biochemistry 48, 4324-4330]. Thus, in the study presented here, we replaced Ala178 with 19 different amino acids and measured the absorption spectra and the pK(a) of the Schiff base counterion, Asp97. Most of the mutants exhibited a spectral red shift and increased pK(a) of Asp97. None of charged amino acids at position 178 influences color tuning of PR specifically, being similar to the Arg replacement studied earlier. Only Cys and Thr replacements exhibited color and a pK(a) similar to that of the wild type. Ser, Val, and Gly mutants behave like the wild type only with respect to the lambda(max) of the species with deprotonated Asp97. We conclude that the E-F loop region contains a unique structure in PR, disruption of which causes large-scale rearrangement of alpha-helices. Ala178 in PR contributes to the blue-shifted absorption (525 nm at neutral pH) and lowering of the counterion pK(a), which is important for proton-pump function in the marine environment, even though its position is far removed from the chromophore binding domain.
通常认为只有位于视黄醛发色团附近的氨基酸负责视紫红质的颜色调谐。然而,我们最近发现,在海洋细菌中的古菌型视紫红质(PR)的 EF 环中,用精氨酸替换丙氨酸 178,可将 pH 中性时的最大吸收波长(λmax)从 525nm 移至 545nm[Yoshitsugu, M., Shibata, M., Ikeda, D., Furutani, Y., and Kandori, H. (2008) Angew. Chem., Int. Ed. 47, 3923-3926]。由于 Ala178 的位置远离视黄醛发色团(约 25A),因此这种不寻常的突变对颜色调谐的分子机制非常有趣。最近的突变研究表明,观察到的颜色变化对 178 位高度特异[Yoshitsugu, M., Yamada, J., and Kandori, H. (2009) Biochemistry 48, 4324-4330]。因此,在本研究中,我们用 19 种不同的氨基酸替换 Ala178,并测量吸收光谱和 Asp97 席夫碱抗衡离子的 pKa。大多数突变体表现出光谱红移和 Asp97 的 pKa 增加。在 178 位的带电荷氨基酸都不能特异性地影响 PR 的颜色调谐,这与之前研究的精氨酸替换相似。只有 Cys 和 Thr 替换表现出与野生型相似的颜色和 pKa。Ser、Val 和 Gly 突变体只有在 Asp97 去质子化的物种的 λmax 方面表现得与野生型相似。我们得出结论,EF 环区域在 PR 中含有独特的结构,破坏该结构会导致 α-螺旋的大规模重排。PR 中的丙氨酸 178 有助于蓝移吸收(中性 pH 时为 525nm)和降低抗衡离子的 pKa,这对于海洋环境中的质子泵功能很重要,尽管其位置远离视黄醛结合域。