Kralj Joel M, Bergo Vladislav B, Amsden Jason J, Spudich Elena N, Spudich John L, Rothschild Kenneth J
Department of Physics, Molecular Biophysics Laboratory and Photonics Center, Boston University, Boston, Massachusetts 02215, USA.
Biochemistry. 2008 Mar 18;47(11):3447-53. doi: 10.1021/bi7018964. Epub 2008 Feb 20.
Proteorhodopsins are a recently discovered class of microbial rhodopsins, ubiquitous in marine bacteria. Over 4000 variants have thus far been discovered, distributed throughout the oceans of the world. Most variants fall into one of two major groups, green- or blue-absorbing proteorhodopsin (GPR and BPR, respectively), on the basis of both the visible absorption maxima (530 versus 490 nm) and photocycle kinetics ( approximately 20 versus approximately 200 ms). For a well-studied pair, these differences appear to be largely determined by the identity of a single residue at position 105 (leucine/GPR and glutamine/BPR). We find using a combination of visible and infrared spectroscopy that a second difference is the protonation state of a glutamic acid residue located at position 142 on the extracellular side of helix D. In BPR, Glu142 (the GPR numbering system is used) is deprotonated and can act as an alternate proton acceptor, thus explaining the earlier observations that neutralization of the Schiff base counterion, Asp97, does not block the formation of the M intermediate. In contrast, Glu142 in GPR is protonated and cannot act in this state as an alternate proton acceptor for the Schiff base. On the basis of these findings, a mechanism is proposed for proton pumping in BPR. Because the pKa of Glu142 is near the pH of its native marine environment, changes in pH may act to modulate its function in the cell.
视紫质是最近发现的一类微生物视紫红质,在海洋细菌中普遍存在。迄今为止已发现4000多种变体,分布于世界各大洋。根据可见吸收最大值(分别为530和490纳米)和光循环动力学(约20毫秒和约200毫秒),大多数变体可分为两个主要类别,即吸收绿光或蓝光的视紫质(分别为GPR和BPR)。对于一对经过充分研究的变体,这些差异似乎在很大程度上由第105位的单个残基(亮氨酸/GPR和谷氨酰胺/BPR)的身份决定。我们通过可见光谱和红外光谱相结合的方法发现,另一个差异是位于螺旋D细胞外侧第142位的谷氨酸残基的质子化状态。在BPR中,Glu142(使用GPR编号系统)去质子化,可作为替代质子受体,从而解释了早期的观察结果,即席夫碱反离子Asp97的中和并不阻止M中间体的形成。相比之下,GPR中的Glu142质子化,在此状态下不能作为席夫碱的替代质子受体。基于这些发现,提出了BPR中质子泵浦的机制。由于Glu142的pKa接近其天然海洋环境的pH值,pH值的变化可能会调节其在细胞中的功能。