Suppr超能文献

心脏特异性缺失N-甲基-D-天冬氨酸受体1可改善高同型半胱氨酸血症中介导的线粒体基质金属蛋白酶-9自噬/线粒体自噬。

Cardiac specific deletion of N-methyl-d-aspartate receptor 1 ameliorates mtMMP-9 mediated autophagy/mitophagy in hyperhomocysteinemia.

作者信息

Tyagi Neetu, Vacek Jonathan C, Givvimani Srikanth, Sen Utpal, Tyagi Suresh C

机构信息

Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40292, USA.

出版信息

J Recept Signal Transduct Res. 2010 Apr;30(2):78-87. doi: 10.3109/10799891003614808.

Abstract

Autophagy is an important process in the pathogenesis of cardiovascular diseases; however, the proximal triggers for mitochondrial autophagy were unknown. The N-methyl-d-aspartate receptor 1 (NMDA-R1) is a receptor for homocysteine (Hcy) and plays a key role in cardiac dysfunction. Cardiac-specific deletion of NMDA-R1 has been shown to ameliorate Hcy-induced myocyte contractility. Hcy activates mitochondrial matrix metalloproteinase-9 (mtMMP-9) and induces translocation of connexin-43 (Cxn-43) to the mitochondria (mtCxn-43). We sought to show cardiac-specific deletion of NMDA-R1 mitigates Hcy-induced mtCxn-43 translocation, mtMMP-9-mediated mtCxn-43 degradation, leading to mitophagy, in part, by decreasing mitochondrial permeability (MPT). Cardiac-specific knockout (KO) of NAMDA-R1 was generated using the cre/lox approach. The myocyte mitochondria were isolated from wild type (WT), WT + Hcy (1.8 g of DL-Hcy/L in the drinking water for 6 weeks), NMDA-R1 KO + Hcy, and NR1(fl/fl)/Cre (NR1(fl/fl)) genetic control mice. Mitochondrial respiratory capacity and MPT were measured by fluorescence-dye methods. The mitochondrial superoxide and peroxinitrite levels were detected by confocal microscopy using Mito-SOX and dihydrorhodamine-123. The mtMMP-9 activity and expression were detected by zymography and RT-PCR analyses. The mtCxn-43 translocation was detected by confocal microscopy. The degradation of mtCxn-43 and LC3-I/II (a marker of autophagy) were detected by Western blot. These results suggested that Hcy enhanced intramitochondrial nitrosative stress in myocytes. There was a robust increase in mtMMP-9 activity. An increase in translocation and degradation of mtCxn-43 was also noted. These increases led to mitophagy. The effects were ameliorated by cardiac-specific deletion of NMDA-R1. We concluded that HHcy increased mitochondrial nitrosative stress, thereby activating mtMMP-9 and inciting the degradation of mtCxn-43. This led to mitophagy, in part, by activating NMDA-R1. The findings of this study will lead to therapeutic ramifications for mitigating cardiovascular diseases by inhibiting the mitochondrial mitophagy and NMDA-R1 receptor.

摘要

自噬是心血管疾病发病机制中的一个重要过程;然而,线粒体自噬的近端触发因素尚不清楚。N-甲基-D-天冬氨酸受体1(NMDA-R1)是同型半胱氨酸(Hcy)的受体,在心脏功能障碍中起关键作用。已证明心脏特异性缺失NMDA-R1可改善Hcy诱导的心肌细胞收缩性。Hcy激活线粒体基质金属蛋白酶-9(mtMMP-9)并诱导连接蛋白43(Cxn-43)转位至线粒体(mtCxn-43)。我们试图证明心脏特异性缺失NMDA-R1可减轻Hcy诱导的mtCxn-43转位、mtMMP-9介导的mtCxn-43降解,进而部分通过降低线粒体通透性(MPT)导致线粒体自噬。使用cre/lox方法构建了NMDA-R1的心脏特异性敲除(KO)模型。从野生型(WT)、WT+Hcy(饮用水中含1.8 g DL-Hcy/L,持续6周)、NMDA-R1 KO+Hcy和NR1(fl/fl)/Cre(NR1(fl/fl))基因对照小鼠中分离心肌细胞线粒体。通过荧光染料法测量线粒体呼吸能力和MPT。使用Mito-SOX和二氢罗丹明-123通过共聚焦显微镜检测线粒体超氧化物和过氧亚硝酸盐水平。通过酶谱分析和RT-PCR分析检测mtMMP-9活性和表达。通过共聚焦显微镜检测mtCxn-43转位。通过蛋白质印迹法检测mtCxn-43和LC3-I/II(自噬标志物)的降解。这些结果表明,Hcy增强了心肌细胞线粒体内的亚硝化应激。mtMMP-9活性显著增加。还注意到mtCxn-43的转位和降解增加。这些增加导致线粒体自噬。心脏特异性缺失NMDA-R1可改善这些效应。我们得出结论,高Hcy血症增加了线粒体亚硝化应激,从而激活mtMMP-9并引发mtCxn-43的降解。这部分通过激活NMDA-R1导致线粒体自噬。本研究结果将为通过抑制线粒体自噬和NMDA-R1受体减轻心血管疾病带来治疗意义。

相似文献

2
Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia.
Am J Physiol Heart Circ Physiol. 2008 Aug;295(2):H890-7. doi: 10.1152/ajpheart.00099.2008. Epub 2008 Jun 20.
3
Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1.
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H887-92. doi: 10.1152/ajpheart.00750.2008. Epub 2009 Jan 30.
4
Mitochondrial MMP activation, dysfunction and arrhythmogenesis in hyperhomocysteinemia.
Curr Vasc Pharmacol. 2008 Apr;6(2):84-92. doi: 10.2174/157016108783955301.
5
Mitochondrial mitophagic mechanisms of myocardial matrix metabolism and remodelling.
Arch Physiol Biochem. 2012 Feb;118(1):31-42. doi: 10.3109/13813455.2011.635660. Epub 2011 Dec 19.
6
Mesenteric vascular remodeling in hyperhomocysteinemia.
Mol Cell Biochem. 2011 Feb;348(1-2):99-108. doi: 10.1007/s11010-010-0643-y. Epub 2010 Nov 13.
7
Arrhythmia and neuronal/endothelial myocyte uncoupling in hyperhomocysteinemia.
Arch Physiol Biochem. 2006 Oct-Dec;112(4-5):219-27. doi: 10.1080/13813450601093443.
9
Synergism between arrhythmia and hyperhomo-cysteinemia in structural heart disease.
Int J Physiol Pathophysiol Pharmacol. 2011;3(2):107-19. Epub 2011 May 29.
10
Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC.
Am J Physiol Heart Circ Physiol. 2006 Dec;291(6):H2825-35. doi: 10.1152/ajpheart.00377.2006. Epub 2006 Jul 28.

引用本文的文献

1
Matrix metalloproteinases in coronary artery disease and myocardial infarction.
Basic Res Cardiol. 2023 May 9;118(1):18. doi: 10.1007/s00395-023-00987-2.
3
Homocysteine as a Predictor of Paroxysmal Atrial Fibrillation-Related Events: A Scoping Review of the Literature.
Diagnostics (Basel). 2022 Sep 9;12(9):2192. doi: 10.3390/diagnostics12092192.
5
Mechanism of Blood-Heart-Barrier Leakage: Implications for COVID-19 Induced Cardiovascular Injury.
Int J Mol Sci. 2021 Dec 17;22(24):13546. doi: 10.3390/ijms222413546.
6
Multi-organ damage by covid-19: congestive (cardio-pulmonary) heart failure, and blood-heart barrier leakage.
Mol Cell Biochem. 2021 Apr;476(4):1891-1895. doi: 10.1007/s11010-021-04054-z. Epub 2021 Jan 22.
7
Homocysteine and Mitochondria in Cardiovascular and Cerebrovascular Systems.
Int J Mol Sci. 2020 Oct 18;21(20):7698. doi: 10.3390/ijms21207698.
9
Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke.
Neurochem Int. 2019 Jan;122:120-138. doi: 10.1016/j.neuint.2018.11.015. Epub 2018 Nov 22.
10
Exercise mitigates the effects of hyperhomocysteinemia on adverse muscle remodeling.
Physiol Rep. 2018 Mar;6(6):e13637. doi: 10.14814/phy2.13637.

本文引用的文献

1
The GST-BHMT assay and related assays for autophagy.
Methods Enzymol. 2009;452:97-118. doi: 10.1016/S0076-6879(08)03607-0.
2
Restoration of contractility in hyperhomocysteinemia by cardiac-specific deletion of NMDA-R1.
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H887-92. doi: 10.1152/ajpheart.00750.2008. Epub 2009 Jan 30.
4
Autophagy in load-induced heart disease.
Circ Res. 2008 Dec 5;103(12):1363-9. doi: 10.1161/CIRCRESAHA.108.186551.
5
Indirubin-3'-oxime impairs mitochondrial oxidative phosphorylation and prevents mitochondrial permeability transition induction.
Toxicol Appl Pharmacol. 2008 Dec 1;233(2):179-85. doi: 10.1016/j.taap.2008.08.005. Epub 2008 Aug 14.
6
Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia.
Am J Physiol Heart Circ Physiol. 2008 Aug;295(2):H890-7. doi: 10.1152/ajpheart.00099.2008. Epub 2008 Jun 20.
8
Cystathionine-beta-synthase gene transfer and 3-deazaadenosine ameliorate inflammatory response in endothelial cells.
Am J Physiol Cell Physiol. 2007 Dec;293(6):C1779-87. doi: 10.1152/ajpcell.00207.2007. Epub 2007 Sep 13.
9
Homocysteine induces cell death in H9C2 cardiomyocytes through the generation of peroxynitrite.
Biochem Biophys Res Commun. 2007 Aug 3;359(3):445-50. doi: 10.1016/j.bbrc.2007.05.147. Epub 2007 May 30.
10
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress.
Nat Med. 2007 May;13(5):619-24. doi: 10.1038/nm1574. Epub 2007 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验