School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN 47907-2032, USA.
BMC Infect Dis. 2010 Feb 19;10:32. doi: 10.1186/1471-2334-10-32.
Non-pharmaceutical interventions (NPI) are the first line of defense against pandemic influenza. These interventions dampen virus spread by reducing contact between infected and susceptible persons. Because they curtail essential societal activities, they must be applied judiciously. Optimal control theory is an approach for modeling and balancing competing objectives such as epidemic spread and NPI cost.
We apply optimal control on an epidemiologic compartmental model to develop triggers for NPI implementation. The objective is to minimize expected person-days lost from influenza related deaths and NPI implementations for the model. We perform a multivariate sensitivity analysis based on Latin Hypercube Sampling to study the effects of input parameters on the optimal control policy. Additional studies investigated the effects of departures from the modeling assumptions, including exponential terminal time and linear NPI implementation cost.
An optimal policy is derived for the control model using a linear NPI implementation cost. Linear cost leads to a "bang-bang" policy in which NPIs are applied at maximum strength when certain state criteria are met. Multivariate sensitivity analyses are presented which indicate that NPI cost, death rate, and recovery rate are influential in determining the policy structure. Further death rate, basic reproductive number and recovery rate are the most influential in determining the expected cumulative death. When applying the NPI policy, the cumulative deaths under exponential and gamma terminal times are close, which implies that the outcome of applying the "bang-bang" policy is insensitive to the exponential assumption. Quadratic cost leads to a multi-level policy in which NPIs are applied at varying strength levels, again based on certain state criteria. Results indicate that linear cost leads to more costly implementation resulting in fewer deaths.
The application of optimal control theory can provide valuable insight to developing effective control strategies for pandemic. Our findings highlight the importance of establishing a sensitive and timely surveillance system for pandemic preparedness.
非药物干预(NPI)是应对大流行性流感的第一道防线。这些干预措施通过减少感染者与易感者之间的接触来抑制病毒传播。由于它们限制了基本的社会活动,因此必须明智地应用。最优控制理论是一种用于建模和平衡竞争目标的方法,例如传染病的传播和 NPI 的成本。
我们将最优控制应用于流行病学隔室模型,以制定 NPI 实施的触发条件。目标是使与流感相关的死亡和 NPI 实施所导致的预期人员损失最小化。我们基于拉丁超立方抽样进行了多变量敏感性分析,以研究输入参数对最优控制策略的影响。其他研究还考察了偏离模型假设的影响,包括指数终端时间和线性 NPI 实施成本。
针对使用线性 NPI 实施成本的控制模型,得出了最优策略。线性成本导致“bang-bang”策略,即当满足某些状态标准时,以最大强度应用 NPI。提出了多变量敏感性分析,表明 NPI 成本、死亡率和恢复率对确定策略结构具有重要影响。进一步的死亡率、基本繁殖数和恢复率是决定预期累积死亡的最主要因素。在应用 NPI 策略时,指数和伽马终端时间下的累积死亡人数接近,这意味着应用“bang-bang”策略的结果对指数假设不敏感。二次成本导致多水平策略,即根据某些状态标准,以不同的强度水平应用 NPI。结果表明,线性成本导致更昂贵的实施,从而导致更少的死亡。
最优控制理论的应用可以为制定大流行控制策略提供有价值的见解。我们的研究结果强调了建立敏感和及时的大流行监测系统对于大流行准备的重要性。