Suppr超能文献

SING:非齐次图中的子图搜索。

SING: subgraph search in non-homogeneous graphs.

机构信息

Dipartimento di Matematica ed Informatica, Università di Catania, Catania, Italy.

出版信息

BMC Bioinformatics. 2010 Feb 19;11:96. doi: 10.1186/1471-2105-11-96.

Abstract

BACKGROUND

Finding the subgraphs of a graph database that are isomorphic to a given query graph has practical applications in several fields, from cheminformatics to image understanding. Since subgraph isomorphism is a computationally hard problem, indexing techniques have been intensively exploited to speed up the process. Such systems filter out those graphs which cannot contain the query, and apply a subgraph isomorphism algorithm to each residual candidate graph. The applicability of such systems is limited to databases of small graphs, because their filtering power degrades on large graphs.

RESULTS

In this paper, SING (Subgraph search In Non-homogeneous Graphs), a novel indexing system able to cope with large graphs, is presented. The method uses the notion of feature, which can be a small subgraph, subtree or path. Each graph in the database is annotated with the set of all its features. The key point is to make use of feature locality information. This idea is used to both improve the filtering performance and speed up the subgraph isomorphism task.

CONCLUSIONS

Extensive tests on chemical compounds, biological networks and synthetic graphs show that the proposed system outperforms the most popular systems in query time over databases of medium and large graphs. Other specific tests show that the proposed system is effective for single large graphs.

摘要

背景

在图数据库中查找与给定查询图同构的子图在化学信息学、图像理解等多个领域都有实际应用。由于子图同构是一个计算难题,因此索引技术被广泛用于加速这一过程。这些系统会过滤掉那些不可能包含查询的图,并对每个剩余的候选图应用子图同构算法。然而,这种系统的适用性仅限于小型图数据库,因为它们的过滤能力在大型图上会降低。

结果

本文提出了一种新颖的索引系统 SING(在非同质图中搜索子图),它能够处理大型图。该方法使用特征的概念,特征可以是一个小的子图、子树或路径。数据库中的每个图都用其所有特征的集合进行标注。关键点是利用特征的局部性信息。这个想法既可以提高过滤性能,也可以加速子图同构任务。

结论

对化合物、生物网络和合成图的广泛测试表明,与中大型图数据库中的最流行系统相比,所提出的系统在查询时间上表现更好。其他特定的测试表明,所提出的系统对于单个大型图也很有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验