Balenghien T, Carron A, Sinègre G, Bicout D J
Biomathématiques et épidémiologie, Equipe Environnement et prédiction de la santé des populations, laboratoire TIMC-IMAG, UMR 5525, CNRS/Ecole nationale vétérinaire de Lyon, 1 avenue Bourgelat, 69280 Marcy l'Etoile, France.
Bull Entomol Res. 2010 Jun;100(3):247-54. doi: 10.1017/S0007485309990745. Epub 2010 Feb 22.
Insect population dynamics depend strongly on environmental factors. For floodwater mosquitoes, meteorological conditions are crucial in the rhythm of mosquito abundances. Indeed, rainfall triggers the egg hatching after flooding breeding sites, and temperature controls the duration of the aquatic immature development up to adult emergence. According to this, we have developed a simple mechanistic and tractable model that describes the population dynamics of floodwater mosquitoes as a function only of the most accessible meteorological variables, rainfall and temperature. The model involves three parameters: development duration tdev of the immature aquatic stages, the adult emergence rate function f(t) (characterized by the emergence time scale tau and shaping the profile of adult population abundance), and the depletion rate, alpha, of adult disappearance. The developed model was subsequently applied to fit experimental field data of the dynamics of Aedes caspius (Pallas), the main pest mosquito in southern France. First, it was found that the emergence rate function of adult mosquitoes very well reproduce experimental data of the dynamics of immature development for all sampled temperatures. The estimated values of tdev and tau both exhibit Arrhenius behaviour as a function of temperature. Second, using the meteorological records of rainfall and temperature as inputs, the model correctly fit data from a two-site CO2 trapping survey conducted in 2004 and 2005. The estimated depletion rates (summation of the mortality and the emigration rates) were found to be a concave quadratic function of temperature with a maximum of 0.5 per days at about 22 degrees C.
昆虫种群动态在很大程度上取决于环境因素。对于洪水孳生的蚊子而言,气象条件对蚊子数量的变化节奏至关重要。实际上,降雨会促使在洪水淹没的孳生地中卵孵化,而温度则控制着水生未成熟阶段直至成虫羽化的发育时长。据此,我们开发了一个简单的机械且易于处理的模型,该模型仅将降雨和温度这两个最易获取的气象变量作为函数来描述洪水孳生蚊子的种群动态。该模型涉及三个参数:未成熟水生阶段的发育时长tdev、成虫羽化率函数f(t)(由羽化时间尺度tau表征并塑造成虫种群数量的分布)以及成虫消失的损耗率alpha。随后,将所开发的模型应用于拟合法国南部主要害虫蚊子——里海伊蚊(Pallas)动态的实验田间数据。首先,发现成虫蚊子的羽化率函数能够很好地再现所有采样温度下未成熟发育动态的实验数据。tdev和tau的估计值均表现出作为温度函数的阿伦尼乌斯行为。其次,将降雨和温度的气象记录作为输入,该模型正确地拟合了2004年和2005年在两个地点进行的二氧化碳诱捕调查的数据。发现估计的损耗率(死亡率和迁出率之和)是温度的凹二次函数,在约22摄氏度时最大值为每天0.5。